input_pipeline/
input_handler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::input_device;
use async_trait::async_trait;
use fuchsia_inspect::health::Reporter;
use fuchsia_inspect::{NumericProperty, Property};
use std::any::Any;
use std::cell::RefCell;
use std::fmt::{Debug, Formatter};
use std::rc::Rc;

pub trait AsRcAny {
    fn as_rc_any(self: Rc<Self>) -> Rc<dyn Any>;
}

impl<T: Any> AsRcAny for T {
    fn as_rc_any(self: Rc<Self>) -> Rc<dyn Any> {
        self
    }
}

/// An [`InputHandler`] dispatches InputEvents to an external service. It maintains
/// service connections necessary to handle the events.
///
/// For example, an [`ImeInputHandler`] holds a proxy to IME and keyboard services.
///
/// [`InputHandler`]s process individual input events through [`handle_input_event()`], which can
/// produce multiple events as an outcome. If the [`InputHandler`] sends an [`InputEvent`] to a
/// service that consumes the event, then the [`InputHandler`] updates the [`InputEvent.handled`]
/// accordingly.
///
/// # Notes
/// * _Callers_ should not invoke [`handle_input_event()`] concurrently since sequences of events
///   must be preserved. The state created by event n may affect the interpretation of event n+1.
/// * _Callees_ should avoid blocking unnecessarily, as that prevents `InputEvent`s from
///   propagating to downstream handlers in a timely manner. See
///   [further discussion of blocking](https://cs.opensource.google/fuchsia/fuchsia/+/main:src/ui/lib/input_pipeline/docs/coding.md).
#[async_trait(?Send)]
pub trait InputHandler: AsRcAny {
    /// Returns a vector of InputEvents to propagate to the next InputHandler.
    ///
    /// * The vector may be empty if, e.g., the handler chose to buffer the
    ///   event.
    /// * The vector may have multiple events if, e.g.,
    ///   * the handler chose to release previously buffered events, or
    ///   * the handler unpacked a single event into multiple events
    ///
    /// # Parameters
    /// `input_event`: The InputEvent to be handled.
    async fn handle_input_event(
        self: std::rc::Rc<Self>,
        input_event: input_device::InputEvent,
    ) -> Vec<input_device::InputEvent>;

    fn set_handler_healthy(self: std::rc::Rc<Self>);

    fn set_handler_unhealthy(self: std::rc::Rc<Self>, msg: &str);

    /// Returns the name of the input handler.
    ///
    /// The default implementation returns the name of the struct implementing
    /// the trait.
    fn get_name(&self) -> &'static str {
        let full_name = std::any::type_name::<Self>();
        match full_name.rmatch_indices("::").nth(0) {
            Some((i, _matched_substr)) => &full_name[i + 2..],
            None => full_name,
        }
    }
}

/// An [`UnhandledInputHandler`] is like an [`InputHandler`], but only deals in unhandled events.
#[async_trait(?Send)]
pub trait UnhandledInputHandler: AsRcAny {
    /// Returns a vector of InputEvents to propagate to the next InputHandler.
    ///
    /// * The vector may be empty if, e.g., the handler chose to buffer the
    ///   event.
    /// * The vector may have multiple events if, e.g.,
    ///   * the handler chose to release previously buffered events, or
    ///   * the handler unpacked a single event into multiple events
    ///
    /// # Parameters
    /// `input_event`: The InputEvent to be handled.
    async fn handle_unhandled_input_event(
        self: std::rc::Rc<Self>,
        unhandled_input_event: input_device::UnhandledInputEvent,
    ) -> Vec<input_device::InputEvent>;

    fn set_handler_healthy(self: std::rc::Rc<Self>);

    fn set_handler_unhealthy(self: std::rc::Rc<Self>, msg: &str);
}

#[async_trait(?Send)]
impl<T> InputHandler for T
where
    T: UnhandledInputHandler,
{
    async fn handle_input_event(
        self: std::rc::Rc<Self>,
        input_event: input_device::InputEvent,
    ) -> Vec<input_device::InputEvent> {
        match input_event.handled {
            input_device::Handled::Yes => return vec![input_event],
            input_device::Handled::No => {
                T::handle_unhandled_input_event(
                    self,
                    input_device::UnhandledInputEvent {
                        device_event: input_event.device_event,
                        device_descriptor: input_event.device_descriptor,
                        event_time: input_event.event_time,
                        trace_id: input_event.trace_id,
                    },
                )
                .await
            }
        }
    }

    fn set_handler_healthy(self: std::rc::Rc<Self>) {
        T::set_handler_healthy(self);
    }

    fn set_handler_unhealthy(self: std::rc::Rc<Self>, msg: &str) {
        T::set_handler_unhealthy(self, msg);
    }
}

pub struct InputHandlerStatus {
    /// A node that contains the state below.
    pub inspect_node: fuchsia_inspect::Node,

    /// The number of unhandled events received by the handler.
    events_received_count: fuchsia_inspect::UintProperty,

    /// The number of reports handled by the handler.
    events_handled_count: fuchsia_inspect::UintProperty,

    /// The event time the last received InputEvent was received.
    last_received_timestamp_ns: fuchsia_inspect::UintProperty,

    // This node records the health status of the `InputHandler`.
    pub health_node: RefCell<fuchsia_inspect::health::Node>,
}

impl PartialEq for InputHandlerStatus {
    fn eq(&self, other: &Self) -> bool {
        self.inspect_node == other.inspect_node
            && self.events_received_count == other.events_received_count
            && self.events_handled_count == other.events_handled_count
            && self.last_received_timestamp_ns == other.last_received_timestamp_ns
    }
}

impl Debug for InputHandlerStatus {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        self.inspect_node.fmt(f)
    }
}

impl Default for InputHandlerStatus {
    fn default() -> Self {
        let inspector = fuchsia_inspect::Inspector::default();
        Self::new(&inspector.root(), "default", false)
    }
}

impl InputHandlerStatus {
    pub fn new(node: &fuchsia_inspect::Node, name: &str, _generates_events: bool) -> Self {
        let handler_node = node.create_child(name);
        let events_received_count = handler_node.create_uint("events_received_count", 0);
        let events_handled_count = handler_node.create_uint("events_handled_count", 0);
        let last_received_timestamp_ns = handler_node.create_uint("last_received_timestamp_ns", 0);
        let mut health_node = fuchsia_inspect::health::Node::new(&handler_node);
        health_node.set_starting_up();
        Self {
            inspect_node: handler_node,
            events_received_count: events_received_count,
            events_handled_count: events_handled_count,
            last_received_timestamp_ns: last_received_timestamp_ns,
            health_node: RefCell::new(health_node),
        }
    }

    pub fn count_received_event(&self, event: input_device::InputEvent) {
        self.events_received_count.add(1);
        self.last_received_timestamp_ns.set(event.event_time.into_nanos().try_into().unwrap());
    }

    pub fn count_handled_event(&self) {
        self.events_handled_count.add(1);
    }
}

#[cfg(test)]
mod tests {
    use super::{async_trait, InputHandler, UnhandledInputHandler};
    use crate::input_device::{
        Handled, InputDeviceDescriptor, InputDeviceEvent, InputEvent, UnhandledInputEvent,
    };
    use crate::input_handler::InputHandlerStatus;

    use futures::channel::mpsc;
    use futures::StreamExt as _;
    use pretty_assertions::assert_eq;
    use test_case::test_case;

    struct FakeUnhandledInputHandler {
        event_sender: mpsc::UnboundedSender<UnhandledInputEvent>,
        mark_events_handled: bool,
    }

    #[async_trait(?Send)]
    impl UnhandledInputHandler for FakeUnhandledInputHandler {
        async fn handle_unhandled_input_event(
            self: std::rc::Rc<Self>,
            unhandled_input_event: UnhandledInputEvent,
        ) -> Vec<InputEvent> {
            self.event_sender
                .unbounded_send(unhandled_input_event.clone())
                .expect("failed to send");
            vec![InputEvent::from(unhandled_input_event).into_handled_if(self.mark_events_handled)]
        }

        fn set_handler_healthy(self: std::rc::Rc<Self>) {
            // No inspect data on FakeUnhandledInputHandler. Do nothing.
        }

        fn set_handler_unhealthy(self: std::rc::Rc<Self>, _msg: &str) {
            // No inspect data on FakeUnhandledInputHandler. Do nothing.
        }
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn blanket_impl_passes_unhandled_events_to_wrapped_handler() {
        let expected_trace_id: Option<fuchsia_trace::Id> = Some(1234.into());
        let (event_sender, mut event_receiver) = mpsc::unbounded();
        let handler = std::rc::Rc::new(FakeUnhandledInputHandler {
            event_sender,
            mark_events_handled: false,
        });
        handler
            .clone()
            .handle_input_event(InputEvent {
                device_event: InputDeviceEvent::Fake,
                device_descriptor: InputDeviceDescriptor::Fake,
                event_time: zx::MonotonicInstant::from_nanos(1),
                handled: Handled::No,
                trace_id: expected_trace_id,
            })
            .await;
        assert_eq!(
            event_receiver.next().await,
            Some(UnhandledInputEvent {
                device_event: InputDeviceEvent::Fake,
                device_descriptor: InputDeviceDescriptor::Fake,
                event_time: zx::MonotonicInstant::from_nanos(1),
                trace_id: expected_trace_id,
            })
        )
    }

    #[test_case(false; "not marked by handler")]
    #[test_case(true; "marked by handler")]
    #[fuchsia::test(allow_stalls = false)]
    async fn blanket_impl_propagates_wrapped_handlers_return_value(mark_events_handled: bool) {
        let (event_sender, _event_receiver) = mpsc::unbounded();
        let handler =
            std::rc::Rc::new(FakeUnhandledInputHandler { event_sender, mark_events_handled });
        let input_event = InputEvent {
            device_event: InputDeviceEvent::Fake,
            device_descriptor: InputDeviceDescriptor::Fake,
            event_time: zx::MonotonicInstant::from_nanos(1),
            handled: Handled::No,
            trace_id: None,
        };
        let expected_propagated_event = input_event.clone().into_handled_if(mark_events_handled);
        pretty_assertions::assert_eq!(
            handler.clone().handle_input_event(input_event).await.as_slice(),
            [expected_propagated_event]
        );
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn blanket_impl_filters_handled_events_from_wrapped_handler() {
        let (event_sender, mut event_receiver) = mpsc::unbounded();
        let handler = std::rc::Rc::new(FakeUnhandledInputHandler {
            event_sender,
            mark_events_handled: false,
        });
        handler
            .clone()
            .handle_input_event(InputEvent {
                device_event: InputDeviceEvent::Fake,
                device_descriptor: InputDeviceDescriptor::Fake,
                event_time: zx::MonotonicInstant::from_nanos(1),
                handled: Handled::Yes,
                trace_id: None,
            })
            .await;

        // Drop `handler` to dispose of `event_sender`. This ensures
        // that `event_receiver.next()` does not block.
        std::mem::drop(handler);

        assert_eq!(event_receiver.next().await, None)
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn blanket_impl_propagates_handled_events_to_next_handler() {
        let (event_sender, _event_receiver) = mpsc::unbounded();
        let handler = std::rc::Rc::new(FakeUnhandledInputHandler {
            event_sender,
            mark_events_handled: false,
        });
        assert_eq!(
            handler
                .clone()
                .handle_input_event(InputEvent {
                    device_event: InputDeviceEvent::Fake,
                    device_descriptor: InputDeviceDescriptor::Fake,
                    event_time: zx::MonotonicInstant::from_nanos(1),
                    handled: Handled::Yes,
                    trace_id: None,
                })
                .await
                .as_slice(),
            [InputEvent {
                device_event: InputDeviceEvent::Fake,
                device_descriptor: InputDeviceDescriptor::Fake,
                event_time: zx::MonotonicInstant::from_nanos(1),
                handled: Handled::Yes,
                trace_id: None,
            }]
        );
    }

    #[fuchsia::test]
    fn get_name() {
        struct NeuralInputHandler {}
        #[async_trait(?Send)]
        impl InputHandler for NeuralInputHandler {
            async fn handle_input_event(
                self: std::rc::Rc<Self>,
                _input_event: InputEvent,
            ) -> Vec<InputEvent> {
                unimplemented!()
            }

            fn set_handler_healthy(self: std::rc::Rc<Self>) {
                unimplemented!()
            }

            fn set_handler_unhealthy(self: std::rc::Rc<Self>, _msg: &str) {
                unimplemented!()
            }
        }

        let handler = std::rc::Rc::new(NeuralInputHandler {});
        assert_eq!(handler.get_name(), "NeuralInputHandler");
    }

    #[fuchsia::test]
    async fn input_handler_status_initialized_with_correct_properties() {
        let inspector = fuchsia_inspect::Inspector::default();
        let input_pipeline_node = inspector.root().create_child("input_pipeline");
        let input_handlers_node = input_pipeline_node.create_child("input_handlers");
        let _input_handler_status =
            InputHandlerStatus::new(&input_handlers_node, "test_handler", false);
        diagnostics_assertions::assert_data_tree!(inspector, root: {
            input_pipeline: {
                input_handlers: {
                    test_handler: {
                        events_received_count: 0u64,
                        events_handled_count: 0u64,
                        last_received_timestamp_ns: 0u64,
                        "fuchsia.inspect.Health": {
                            status: "STARTING_UP",
                            // Timestamp value is unpredictable and not relevant in this context,
                            // so we only assert that the property is present.
                            start_timestamp_nanos: diagnostics_assertions::AnyProperty
                        },
                    }
                }
            }
        });
    }
}