ring/
digest.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
// Copyright 2015-2019 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! SHA-2 and the legacy SHA-1 digest algorithm.
//!
//! If all the data is available in a single contiguous slice then the `digest`
//! function should be used. Otherwise, the digest can be calculated in
//! multiple steps using `Context`.

// Note on why are we doing things the hard way: It would be easy to implement
// this using the C `EVP_MD`/`EVP_MD_CTX` interface. However, if we were to do
// things that way, we'd have a hard dependency on `malloc` and other overhead.
// The goal for this implementation is to drive the overhead as close to zero
// as possible.

use crate::{
    c, cpu, debug,
    endian::{self, BigEndian},
    polyfill,
};
use core::num::Wrapping;

mod sha1;
mod sha2;

#[derive(Clone)]
pub(crate) struct BlockContext {
    state: State,

    // Note that SHA-512 has a 128-bit input bit counter, but this
    // implementation only supports up to 2^64-1 input bits for all algorithms,
    // so a 64-bit counter is more than sufficient.
    completed_data_blocks: u64,

    /// The context's algorithm.
    pub algorithm: &'static Algorithm,

    cpu_features: cpu::Features,
}

impl BlockContext {
    pub(crate) fn new(algorithm: &'static Algorithm) -> Self {
        Self {
            state: algorithm.initial_state,
            completed_data_blocks: 0,
            algorithm,
            cpu_features: cpu::features(),
        }
    }

    #[inline]
    pub(crate) fn update(&mut self, input: &[u8]) {
        let num_blocks = input.len() / self.algorithm.block_len;
        assert_eq!(num_blocks * self.algorithm.block_len, input.len());
        if num_blocks > 0 {
            unsafe {
                (self.algorithm.block_data_order)(&mut self.state, input.as_ptr(), num_blocks);
            }
            self.completed_data_blocks = self
                .completed_data_blocks
                .checked_add(polyfill::u64_from_usize(num_blocks))
                .unwrap();
        }
    }

    pub(crate) fn finish(mut self, pending: &mut [u8], num_pending: usize) -> Digest {
        let block_len = self.algorithm.block_len;
        assert_eq!(pending.len(), block_len);
        assert!(num_pending <= pending.len());

        let mut padding_pos = num_pending;
        pending[padding_pos] = 0x80;
        padding_pos += 1;

        if padding_pos > block_len - self.algorithm.len_len {
            polyfill::slice::fill(&mut pending[padding_pos..block_len], 0);
            unsafe {
                (self.algorithm.block_data_order)(&mut self.state, pending.as_ptr(), 1);
            }
            // We don't increase |self.completed_data_blocks| because the
            // padding isn't data, and so it isn't included in the data length.
            padding_pos = 0;
        }

        polyfill::slice::fill(&mut pending[padding_pos..(block_len - 8)], 0);

        // Output the length, in bits, in big endian order.
        let completed_data_bits = self
            .completed_data_blocks
            .checked_mul(polyfill::u64_from_usize(block_len))
            .unwrap()
            .checked_add(polyfill::u64_from_usize(num_pending))
            .unwrap()
            .checked_mul(8)
            .unwrap();
        pending[(block_len - 8)..block_len].copy_from_slice(&u64::to_be_bytes(completed_data_bits));

        unsafe {
            (self.algorithm.block_data_order)(&mut self.state, pending.as_ptr(), 1);
        }

        Digest {
            algorithm: self.algorithm,
            value: (self.algorithm.format_output)(self.state),
        }
    }
}

/// A context for multi-step (Init-Update-Finish) digest calculations.
///
/// # Examples
///
/// ```
/// use ring::digest;
///
/// let one_shot = digest::digest(&digest::SHA384, b"hello, world");
///
/// let mut ctx = digest::Context::new(&digest::SHA384);
/// ctx.update(b"hello");
/// ctx.update(b", ");
/// ctx.update(b"world");
/// let multi_part = ctx.finish();
///
/// assert_eq!(&one_shot.as_ref(), &multi_part.as_ref());
/// ```
#[derive(Clone)]
pub struct Context {
    block: BlockContext,
    // TODO: More explicitly force 64-bit alignment for |pending|.
    pending: [u8; MAX_BLOCK_LEN],
    num_pending: usize,
}

impl Context {
    /// Constructs a new context.
    pub fn new(algorithm: &'static Algorithm) -> Self {
        Self {
            block: BlockContext::new(algorithm),
            pending: [0u8; MAX_BLOCK_LEN],
            num_pending: 0,
        }
    }

    pub(crate) fn clone_from(block: &BlockContext) -> Self {
        Self {
            block: block.clone(),
            pending: [0u8; MAX_BLOCK_LEN],
            num_pending: 0,
        }
    }

    /// Updates the digest with all the data in `data`. `update` may be called
    /// zero or more times until `finish` is called. It must not be called
    /// after `finish` has been called.
    pub fn update(&mut self, data: &[u8]) {
        let block_len = self.block.algorithm.block_len;
        if data.len() < block_len - self.num_pending {
            self.pending[self.num_pending..(self.num_pending + data.len())].copy_from_slice(data);
            self.num_pending += data.len();
            return;
        }

        let mut remaining = data;
        if self.num_pending > 0 {
            let to_copy = block_len - self.num_pending;
            self.pending[self.num_pending..block_len].copy_from_slice(&data[..to_copy]);
            self.block.update(&self.pending[..block_len]);
            remaining = &remaining[to_copy..];
            self.num_pending = 0;
        }

        let num_blocks = remaining.len() / block_len;
        let num_to_save_for_later = remaining.len() % block_len;
        self.block.update(&remaining[..(num_blocks * block_len)]);
        if num_to_save_for_later > 0 {
            self.pending[..num_to_save_for_later]
                .copy_from_slice(&remaining[(remaining.len() - num_to_save_for_later)..]);
            self.num_pending = num_to_save_for_later;
        }
    }

    /// Finalizes the digest calculation and returns the digest value. `finish`
    /// consumes the context so it cannot be (mis-)used after `finish` has been
    /// called.
    pub fn finish(mut self) -> Digest {
        let block_len = self.block.algorithm.block_len;
        self.block
            .finish(&mut self.pending[..block_len], self.num_pending)
    }

    /// The algorithm that this context is using.
    #[inline(always)]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.block.algorithm
    }
}

/// Returns the digest of `data` using the given digest algorithm.
///
/// # Examples:
///
/// ```
/// # #[cfg(feature = "alloc")]
/// # {
/// use ring::{digest, test};
/// let expected_hex = "09ca7e4eaa6e8ae9c7d261167129184883644d07dfba7cbfbc4c8a2e08360d5b";
/// let expected: Vec<u8> = test::from_hex(expected_hex).unwrap();
/// let actual = digest::digest(&digest::SHA256, b"hello, world");
///
/// assert_eq!(&expected, &actual.as_ref());
/// # }
/// ```
pub fn digest(algorithm: &'static Algorithm, data: &[u8]) -> Digest {
    let mut ctx = Context::new(algorithm);
    ctx.update(data);
    ctx.finish()
}

/// A calculated digest value.
///
/// Use `as_ref` to get the value as a `&[u8]`.
#[derive(Clone, Copy)]
pub struct Digest {
    value: Output,
    algorithm: &'static Algorithm,
}

impl Digest {
    /// The algorithm that was used to calculate the digest value.
    #[inline(always)]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.algorithm
    }
}

impl AsRef<[u8]> for Digest {
    #[inline(always)]
    fn as_ref(&self) -> &[u8] {
        let as64 = unsafe { &self.value.as64 };
        &endian::as_byte_slice(as64)[..self.algorithm.output_len]
    }
}

impl core::fmt::Debug for Digest {
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(fmt, "{:?}:", self.algorithm)?;
        debug::write_hex_bytes(fmt, self.as_ref())
    }
}

/// A digest algorithm.
pub struct Algorithm {
    /// The length of a finalized digest.
    pub output_len: usize,

    /// The size of the chaining value of the digest function, in bytes. For
    /// non-truncated algorithms (SHA-1, SHA-256, SHA-512), this is equal to
    /// `output_len`. For truncated algorithms (e.g. SHA-384, SHA-512/256),
    /// this is equal to the length before truncation. This is mostly helpful
    /// for determining the size of an HMAC key that is appropriate for the
    /// digest algorithm.
    pub chaining_len: usize,

    /// The internal block length.
    pub block_len: usize,

    /// The length of the length in the padding.
    len_len: usize,

    block_data_order: unsafe extern "C" fn(state: &mut State, data: *const u8, num: c::size_t),
    format_output: fn(input: State) -> Output,

    initial_state: State,

    id: AlgorithmID,
}

#[derive(Debug, Eq, PartialEq)]
enum AlgorithmID {
    SHA1,
    SHA256,
    SHA384,
    SHA512,
    SHA512_256,
}

impl PartialEq for Algorithm {
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id
    }
}

impl Eq for Algorithm {}

derive_debug_via_id!(Algorithm);

/// SHA-1 as specified in [FIPS 180-4]. Deprecated.
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm {
    output_len: sha1::OUTPUT_LEN,
    chaining_len: sha1::CHAINING_LEN,
    block_len: sha1::BLOCK_LEN,
    len_len: 64 / 8,
    block_data_order: sha1::block_data_order,
    format_output: sha256_format_output,
    initial_state: State {
        as32: [
            Wrapping(0x67452301u32),
            Wrapping(0xefcdab89u32),
            Wrapping(0x98badcfeu32),
            Wrapping(0x10325476u32),
            Wrapping(0xc3d2e1f0u32),
            Wrapping(0),
            Wrapping(0),
            Wrapping(0),
        ],
    },
    id: AlgorithmID::SHA1,
};

/// SHA-256 as specified in [FIPS 180-4].
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA256: Algorithm = Algorithm {
    output_len: SHA256_OUTPUT_LEN,
    chaining_len: SHA256_OUTPUT_LEN,
    block_len: 512 / 8,
    len_len: 64 / 8,
    block_data_order: sha2::GFp_sha256_block_data_order,
    format_output: sha256_format_output,
    initial_state: State {
        as32: [
            Wrapping(0x6a09e667u32),
            Wrapping(0xbb67ae85u32),
            Wrapping(0x3c6ef372u32),
            Wrapping(0xa54ff53au32),
            Wrapping(0x510e527fu32),
            Wrapping(0x9b05688cu32),
            Wrapping(0x1f83d9abu32),
            Wrapping(0x5be0cd19u32),
        ],
    },
    id: AlgorithmID::SHA256,
};

/// SHA-384 as specified in [FIPS 180-4].
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA384: Algorithm = Algorithm {
    output_len: SHA384_OUTPUT_LEN,
    chaining_len: SHA512_OUTPUT_LEN,
    block_len: SHA512_BLOCK_LEN,
    len_len: SHA512_LEN_LEN,
    block_data_order: sha2::GFp_sha512_block_data_order,
    format_output: sha512_format_output,
    initial_state: State {
        as64: [
            Wrapping(0xcbbb9d5dc1059ed8),
            Wrapping(0x629a292a367cd507),
            Wrapping(0x9159015a3070dd17),
            Wrapping(0x152fecd8f70e5939),
            Wrapping(0x67332667ffc00b31),
            Wrapping(0x8eb44a8768581511),
            Wrapping(0xdb0c2e0d64f98fa7),
            Wrapping(0x47b5481dbefa4fa4),
        ],
    },
    id: AlgorithmID::SHA384,
};

/// SHA-512 as specified in [FIPS 180-4].
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA512: Algorithm = Algorithm {
    output_len: SHA512_OUTPUT_LEN,
    chaining_len: SHA512_OUTPUT_LEN,
    block_len: SHA512_BLOCK_LEN,
    len_len: SHA512_LEN_LEN,
    block_data_order: sha2::GFp_sha512_block_data_order,
    format_output: sha512_format_output,
    initial_state: State {
        as64: [
            Wrapping(0x6a09e667f3bcc908),
            Wrapping(0xbb67ae8584caa73b),
            Wrapping(0x3c6ef372fe94f82b),
            Wrapping(0xa54ff53a5f1d36f1),
            Wrapping(0x510e527fade682d1),
            Wrapping(0x9b05688c2b3e6c1f),
            Wrapping(0x1f83d9abfb41bd6b),
            Wrapping(0x5be0cd19137e2179),
        ],
    },
    id: AlgorithmID::SHA512,
};

/// SHA-512/256 as specified in [FIPS 180-4].
///
/// This is *not* the same as just truncating the output of SHA-512, as
/// SHA-512/256 has its own initial state distinct from SHA-512's initial
/// state.
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA512_256: Algorithm = Algorithm {
    output_len: SHA512_256_OUTPUT_LEN,
    chaining_len: SHA512_OUTPUT_LEN,
    block_len: SHA512_BLOCK_LEN,
    len_len: SHA512_LEN_LEN,
    block_data_order: sha2::GFp_sha512_block_data_order,
    format_output: sha512_format_output,
    initial_state: State {
        as64: [
            Wrapping(0x22312194fc2bf72c),
            Wrapping(0x9f555fa3c84c64c2),
            Wrapping(0x2393b86b6f53b151),
            Wrapping(0x963877195940eabd),
            Wrapping(0x96283ee2a88effe3),
            Wrapping(0xbe5e1e2553863992),
            Wrapping(0x2b0199fc2c85b8aa),
            Wrapping(0x0eb72ddc81c52ca2),
        ],
    },
    id: AlgorithmID::SHA512_256,
};

#[derive(Clone, Copy)] // XXX: Why do we need to be `Copy`?
#[repr(C)]
union State {
    as64: [Wrapping<u64>; sha2::CHAINING_WORDS],
    as32: [Wrapping<u32>; sha2::CHAINING_WORDS],
}

#[derive(Clone, Copy)]
#[repr(C)]
union Output {
    as64: [BigEndian<u64>; 512 / 8 / core::mem::size_of::<BigEndian<u64>>()],
    as32: [BigEndian<u32>; 256 / 8 / core::mem::size_of::<BigEndian<u32>>()],
}

/// The maximum block length (`Algorithm::block_len`) of all the algorithms in
/// this module.
pub const MAX_BLOCK_LEN: usize = 1024 / 8;

/// The maximum output length (`Algorithm::output_len`) of all the algorithms
/// in this module.
pub const MAX_OUTPUT_LEN: usize = 512 / 8;

/// The maximum chaining length (`Algorithm::chaining_len`) of all the
/// algorithms in this module.
pub const MAX_CHAINING_LEN: usize = MAX_OUTPUT_LEN;

fn sha256_format_output(input: State) -> Output {
    let input = unsafe { &input.as32 };
    Output {
        as32: [
            BigEndian::from(input[0]),
            BigEndian::from(input[1]),
            BigEndian::from(input[2]),
            BigEndian::from(input[3]),
            BigEndian::from(input[4]),
            BigEndian::from(input[5]),
            BigEndian::from(input[6]),
            BigEndian::from(input[7]),
        ],
    }
}

fn sha512_format_output(input: State) -> Output {
    let input = unsafe { &input.as64 };
    Output {
        as64: [
            BigEndian::from(input[0]),
            BigEndian::from(input[1]),
            BigEndian::from(input[2]),
            BigEndian::from(input[3]),
            BigEndian::from(input[4]),
            BigEndian::from(input[5]),
            BigEndian::from(input[6]),
            BigEndian::from(input[7]),
        ],
    }
}

/// The length of the output of SHA-1, in bytes.
pub const SHA1_OUTPUT_LEN: usize = sha1::OUTPUT_LEN;

/// The length of the output of SHA-256, in bytes.
pub const SHA256_OUTPUT_LEN: usize = 256 / 8;

/// The length of the output of SHA-384, in bytes.
pub const SHA384_OUTPUT_LEN: usize = 384 / 8;

/// The length of the output of SHA-512, in bytes.
pub const SHA512_OUTPUT_LEN: usize = 512 / 8;

/// The length of the output of SHA-512/256, in bytes.
pub const SHA512_256_OUTPUT_LEN: usize = 256 / 8;

/// The length of a block for SHA-512-based algorithms, in bytes.
const SHA512_BLOCK_LEN: usize = 1024 / 8;

/// The length of the length field for SHA-512-based algorithms, in bytes.
const SHA512_LEN_LEN: usize = 128 / 8;

#[cfg(test)]
mod tests {

    mod max_input {
        use super::super::super::digest;
        use crate::polyfill;
        use alloc::vec;

        macro_rules! max_input_tests {
            ( $algorithm_name:ident ) => {
                mod $algorithm_name {
                    use super::super::super::super::digest;

                    #[test]
                    fn max_input_test() {
                        super::max_input_test(&digest::$algorithm_name);
                    }

                    #[test]
                    #[should_panic]
                    fn too_long_input_test_block() {
                        super::too_long_input_test_block(&digest::$algorithm_name);
                    }

                    #[test]
                    #[should_panic]
                    fn too_long_input_test_byte() {
                        super::too_long_input_test_byte(&digest::$algorithm_name);
                    }
                }
            };
        }

        fn max_input_test(alg: &'static digest::Algorithm) {
            let mut context = nearly_full_context(alg);
            let next_input = vec![0u8; alg.block_len - 1];
            context.update(&next_input);
            let _ = context.finish(); // no panic
        }

        fn too_long_input_test_block(alg: &'static digest::Algorithm) {
            let mut context = nearly_full_context(alg);
            let next_input = vec![0u8; alg.block_len];
            context.update(&next_input);
            let _ = context.finish(); // should panic
        }

        fn too_long_input_test_byte(alg: &'static digest::Algorithm) {
            let mut context = nearly_full_context(alg);
            let next_input = vec![0u8; alg.block_len - 1];
            context.update(&next_input); // no panic
            context.update(&[0]);
            let _ = context.finish(); // should panic
        }

        fn nearly_full_context(alg: &'static digest::Algorithm) -> digest::Context {
            // All implementations currently support up to 2^64-1 bits
            // of input; according to the spec, SHA-384 and SHA-512
            // support up to 2^128-1, but that's not implemented yet.
            let max_bytes = 1u64 << (64 - 3);
            let max_blocks = max_bytes / polyfill::u64_from_usize(alg.block_len);
            digest::Context {
                block: digest::BlockContext {
                    state: alg.initial_state,
                    completed_data_blocks: max_blocks - 1,
                    algorithm: alg,
                    cpu_features: crate::cpu::features(),
                },
                pending: [0u8; digest::MAX_BLOCK_LEN],
                num_pending: 0,
            }
        }

        max_input_tests!(SHA1_FOR_LEGACY_USE_ONLY);
        max_input_tests!(SHA256);
        max_input_tests!(SHA384);
        max_input_tests!(SHA512);
    }
}