arrayvec/arrayvec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
use std::cmp;
use std::iter;
use std::mem;
use std::ops::{Bound, Deref, DerefMut, RangeBounds};
use std::ptr;
use std::slice;
// extra traits
use std::borrow::{Borrow, BorrowMut};
use std::hash::{Hash, Hasher};
use std::fmt;
#[cfg(feature="std")]
use std::io;
use std::mem::ManuallyDrop;
use std::mem::MaybeUninit;
#[cfg(feature="serde")]
use serde::{Serialize, Deserialize, Serializer, Deserializer};
use crate::LenUint;
use crate::errors::CapacityError;
use crate::arrayvec_impl::ArrayVecImpl;
use crate::utils::MakeMaybeUninit;
/// A vector with a fixed capacity.
///
/// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of
/// the number of initialized elements. The `ArrayVec<T, CAP>` is parameterized
/// by `T` for the element type and `CAP` for the maximum capacity.
///
/// `CAP` is of type `usize` but is range limited to `u32::MAX`; attempting to create larger
/// arrayvecs with larger capacity will panic.
///
/// The vector is a contiguous value (storing the elements inline) that you can store directly on
/// the stack if needed.
///
/// It offers a simple API but also dereferences to a slice, so that the full slice API is
/// available. The ArrayVec can be converted into a by value iterator.
pub struct ArrayVec<T, const CAP: usize> {
// the `len` first elements of the array are initialized
xs: [MaybeUninit<T>; CAP],
len: LenUint,
}
impl<T, const CAP: usize> Drop for ArrayVec<T, CAP> {
fn drop(&mut self) {
self.clear();
// MaybeUninit inhibits array's drop
}
}
macro_rules! panic_oob {
($method_name:expr, $index:expr, $len:expr) => {
panic!(concat!("ArrayVec::", $method_name, ": index {} is out of bounds in vector of length {}"),
$index, $len)
}
}
impl<T, const CAP: usize> ArrayVec<T, CAP> {
/// Capacity
const CAPACITY: usize = CAP;
/// Create a new empty `ArrayVec`.
///
/// The maximum capacity is given by the generic parameter `CAP`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::<_, 16>::new();
/// array.push(1);
/// array.push(2);
/// assert_eq!(&array[..], &[1, 2]);
/// assert_eq!(array.capacity(), 16);
/// ```
#[inline]
#[track_caller]
pub fn new() -> ArrayVec<T, CAP> {
assert_capacity_limit!(CAP);
unsafe {
ArrayVec { xs: MaybeUninit::uninit().assume_init(), len: 0 }
}
}
/// Create a new empty `ArrayVec` (const fn).
///
/// The maximum capacity is given by the generic parameter `CAP`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// static ARRAY: ArrayVec<u8, 1024> = ArrayVec::new_const();
/// ```
pub const fn new_const() -> ArrayVec<T, CAP> {
assert_capacity_limit_const!(CAP);
ArrayVec { xs: MakeMaybeUninit::ARRAY, len: 0 }
}
/// Return the number of elements in the `ArrayVec`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
/// array.pop();
/// assert_eq!(array.len(), 2);
/// ```
#[inline(always)]
pub const fn len(&self) -> usize { self.len as usize }
/// Returns whether the `ArrayVec` is empty.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1]);
/// array.pop();
/// assert_eq!(array.is_empty(), true);
/// ```
#[inline]
pub const fn is_empty(&self) -> bool { self.len() == 0 }
/// Return the capacity of the `ArrayVec`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let array = ArrayVec::from([1, 2, 3]);
/// assert_eq!(array.capacity(), 3);
/// ```
#[inline(always)]
pub const fn capacity(&self) -> usize { CAP }
/// Return true if the `ArrayVec` is completely filled to its capacity, false otherwise.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::<_, 1>::new();
/// assert!(!array.is_full());
/// array.push(1);
/// assert!(array.is_full());
/// ```
pub const fn is_full(&self) -> bool { self.len() == self.capacity() }
/// Returns the capacity left in the `ArrayVec`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
/// array.pop();
/// assert_eq!(array.remaining_capacity(), 1);
/// ```
pub const fn remaining_capacity(&self) -> usize {
self.capacity() - self.len()
}
/// Push `element` to the end of the vector.
///
/// ***Panics*** if the vector is already full.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::<_, 2>::new();
///
/// array.push(1);
/// array.push(2);
///
/// assert_eq!(&array[..], &[1, 2]);
/// ```
#[track_caller]
pub fn push(&mut self, element: T) {
ArrayVecImpl::push(self, element)
}
/// Push `element` to the end of the vector.
///
/// Return `Ok` if the push succeeds, or return an error if the vector
/// is already full.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::<_, 2>::new();
///
/// let push1 = array.try_push(1);
/// let push2 = array.try_push(2);
///
/// assert!(push1.is_ok());
/// assert!(push2.is_ok());
///
/// assert_eq!(&array[..], &[1, 2]);
///
/// let overflow = array.try_push(3);
///
/// assert!(overflow.is_err());
/// ```
pub fn try_push(&mut self, element: T) -> Result<(), CapacityError<T>> {
ArrayVecImpl::try_push(self, element)
}
/// Push `element` to the end of the vector without checking the capacity.
///
/// It is up to the caller to ensure the capacity of the vector is
/// sufficiently large.
///
/// This method uses *debug assertions* to check that the arrayvec is not full.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::<_, 2>::new();
///
/// if array.len() + 2 <= array.capacity() {
/// unsafe {
/// array.push_unchecked(1);
/// array.push_unchecked(2);
/// }
/// }
///
/// assert_eq!(&array[..], &[1, 2]);
/// ```
pub unsafe fn push_unchecked(&mut self, element: T) {
ArrayVecImpl::push_unchecked(self, element)
}
/// Shortens the vector, keeping the first `len` elements and dropping
/// the rest.
///
/// If `len` is greater than the vector’s current length this has no
/// effect.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3, 4, 5]);
/// array.truncate(3);
/// assert_eq!(&array[..], &[1, 2, 3]);
/// array.truncate(4);
/// assert_eq!(&array[..], &[1, 2, 3]);
/// ```
pub fn truncate(&mut self, new_len: usize) {
ArrayVecImpl::truncate(self, new_len)
}
/// Remove all elements in the vector.
pub fn clear(&mut self) {
ArrayVecImpl::clear(self)
}
/// Get pointer to where element at `index` would be
unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut T {
self.as_mut_ptr().add(index)
}
/// Insert `element` at position `index`.
///
/// Shift up all elements after `index`.
///
/// It is an error if the index is greater than the length or if the
/// arrayvec is full.
///
/// ***Panics*** if the array is full or the `index` is out of bounds. See
/// `try_insert` for fallible version.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::<_, 2>::new();
///
/// array.insert(0, "x");
/// array.insert(0, "y");
/// assert_eq!(&array[..], &["y", "x"]);
///
/// ```
#[track_caller]
pub fn insert(&mut self, index: usize, element: T) {
self.try_insert(index, element).unwrap()
}
/// Insert `element` at position `index`.
///
/// Shift up all elements after `index`; the `index` must be less than
/// or equal to the length.
///
/// Returns an error if vector is already at full capacity.
///
/// ***Panics*** `index` is out of bounds.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::<_, 2>::new();
///
/// assert!(array.try_insert(0, "x").is_ok());
/// assert!(array.try_insert(0, "y").is_ok());
/// assert!(array.try_insert(0, "z").is_err());
/// assert_eq!(&array[..], &["y", "x"]);
///
/// ```
pub fn try_insert(&mut self, index: usize, element: T) -> Result<(), CapacityError<T>> {
if index > self.len() {
panic_oob!("try_insert", index, self.len())
}
if self.len() == self.capacity() {
return Err(CapacityError::new(element));
}
let len = self.len();
// follows is just like Vec<T>
unsafe { // infallible
// The spot to put the new value
{
let p: *mut _ = self.get_unchecked_ptr(index);
// Shift everything over to make space. (Duplicating the
// `index`th element into two consecutive places.)
ptr::copy(p, p.offset(1), len - index);
// Write it in, overwriting the first copy of the `index`th
// element.
ptr::write(p, element);
}
self.set_len(len + 1);
}
Ok(())
}
/// Remove the last element in the vector and return it.
///
/// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::<_, 2>::new();
///
/// array.push(1);
///
/// assert_eq!(array.pop(), Some(1));
/// assert_eq!(array.pop(), None);
/// ```
pub fn pop(&mut self) -> Option<T> {
ArrayVecImpl::pop(self)
}
/// Remove the element at `index` and swap the last element into its place.
///
/// This operation is O(1).
///
/// Return the *element* if the index is in bounds, else panic.
///
/// ***Panics*** if the `index` is out of bounds.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
///
/// assert_eq!(array.swap_remove(0), 1);
/// assert_eq!(&array[..], &[3, 2]);
///
/// assert_eq!(array.swap_remove(1), 2);
/// assert_eq!(&array[..], &[3]);
/// ```
pub fn swap_remove(&mut self, index: usize) -> T {
self.swap_pop(index)
.unwrap_or_else(|| {
panic_oob!("swap_remove", index, self.len())
})
}
/// Remove the element at `index` and swap the last element into its place.
///
/// This is a checked version of `.swap_remove`.
/// This operation is O(1).
///
/// Return `Some(` *element* `)` if the index is in bounds, else `None`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
///
/// assert_eq!(array.swap_pop(0), Some(1));
/// assert_eq!(&array[..], &[3, 2]);
///
/// assert_eq!(array.swap_pop(10), None);
/// ```
pub fn swap_pop(&mut self, index: usize) -> Option<T> {
let len = self.len();
if index >= len {
return None;
}
self.swap(index, len - 1);
self.pop()
}
/// Remove the element at `index` and shift down the following elements.
///
/// The `index` must be strictly less than the length of the vector.
///
/// ***Panics*** if the `index` is out of bounds.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
///
/// let removed_elt = array.remove(0);
/// assert_eq!(removed_elt, 1);
/// assert_eq!(&array[..], &[2, 3]);
/// ```
pub fn remove(&mut self, index: usize) -> T {
self.pop_at(index)
.unwrap_or_else(|| {
panic_oob!("remove", index, self.len())
})
}
/// Remove the element at `index` and shift down the following elements.
///
/// This is a checked version of `.remove(index)`. Returns `None` if there
/// is no element at `index`. Otherwise, return the element inside `Some`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
///
/// assert!(array.pop_at(0).is_some());
/// assert_eq!(&array[..], &[2, 3]);
///
/// assert!(array.pop_at(2).is_none());
/// assert!(array.pop_at(10).is_none());
/// ```
pub fn pop_at(&mut self, index: usize) -> Option<T> {
if index >= self.len() {
None
} else {
self.drain(index..index + 1).next()
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&mut e)` returns false.
/// This method operates in place and preserves the order of the retained
/// elements.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3, 4]);
/// array.retain(|x| *x & 1 != 0 );
/// assert_eq!(&array[..], &[1, 3]);
/// ```
pub fn retain<F>(&mut self, mut f: F)
where F: FnMut(&mut T) -> bool
{
// Check the implementation of
// https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain
// for safety arguments (especially regarding panics in f and when
// dropping elements). Implementation closely mirrored here.
let original_len = self.len();
unsafe { self.set_len(0) };
struct BackshiftOnDrop<'a, T, const CAP: usize> {
v: &'a mut ArrayVec<T, CAP>,
processed_len: usize,
deleted_cnt: usize,
original_len: usize,
}
impl<T, const CAP: usize> Drop for BackshiftOnDrop<'_, T, CAP> {
fn drop(&mut self) {
if self.deleted_cnt > 0 {
unsafe {
ptr::copy(
self.v.as_ptr().add(self.processed_len),
self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
self.original_len - self.processed_len
);
}
}
unsafe {
self.v.set_len(self.original_len - self.deleted_cnt);
}
}
}
let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
#[inline(always)]
fn process_one<F: FnMut(&mut T) -> bool, T, const CAP: usize, const DELETED: bool>(
f: &mut F,
g: &mut BackshiftOnDrop<'_, T, CAP>
) -> bool {
let cur = unsafe { g.v.as_mut_ptr().add(g.processed_len) };
if !f(unsafe { &mut *cur }) {
g.processed_len += 1;
g.deleted_cnt += 1;
unsafe { ptr::drop_in_place(cur) };
return false;
}
if DELETED {
unsafe {
let hole_slot = cur.sub(g.deleted_cnt);
ptr::copy_nonoverlapping(cur, hole_slot, 1);
}
}
g.processed_len += 1;
true
}
// Stage 1: Nothing was deleted.
while g.processed_len != original_len {
if !process_one::<F, T, CAP, false>(&mut f, &mut g) {
break;
}
}
// Stage 2: Some elements were deleted.
while g.processed_len != original_len {
process_one::<F, T, CAP, true>(&mut f, &mut g);
}
drop(g);
}
/// Set the vector’s length without dropping or moving out elements
///
/// This method is `unsafe` because it changes the notion of the
/// number of “valid” elements in the vector. Use with care.
///
/// This method uses *debug assertions* to check that `length` is
/// not greater than the capacity.
pub unsafe fn set_len(&mut self, length: usize) {
// type invariant that capacity always fits in LenUint
debug_assert!(length <= self.capacity());
self.len = length as LenUint;
}
/// Copy all elements from the slice and append to the `ArrayVec`.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut vec: ArrayVec<usize, 10> = ArrayVec::new();
/// vec.push(1);
/// vec.try_extend_from_slice(&[2, 3]).unwrap();
/// assert_eq!(&vec[..], &[1, 2, 3]);
/// ```
///
/// # Errors
///
/// This method will return an error if the capacity left (see
/// [`remaining_capacity`]) is smaller then the length of the provided
/// slice.
///
/// [`remaining_capacity`]: #method.remaining_capacity
pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), CapacityError>
where T: Copy,
{
if self.remaining_capacity() < other.len() {
return Err(CapacityError::new(()));
}
let self_len = self.len();
let other_len = other.len();
unsafe {
let dst = self.get_unchecked_ptr(self_len);
ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len);
self.set_len(self_len + other_len);
}
Ok(())
}
/// Create a draining iterator that removes the specified range in the vector
/// and yields the removed items from start to end. The element range is
/// removed even if the iterator is not consumed until the end.
///
/// Note: It is unspecified how many elements are removed from the vector,
/// if the `Drain` value is leaked.
///
/// **Panics** if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut v1 = ArrayVec::from([1, 2, 3]);
/// let v2: ArrayVec<_, 3> = v1.drain(0..2).collect();
/// assert_eq!(&v1[..], &[3]);
/// assert_eq!(&v2[..], &[1, 2]);
/// ```
pub fn drain<R>(&mut self, range: R) -> Drain<T, CAP>
where R: RangeBounds<usize>
{
// Memory safety
//
// When the Drain is first created, it shortens the length of
// the source vector to make sure no uninitialized or moved-from elements
// are accessible at all if the Drain's destructor never gets to run.
//
// Drain will ptr::read out the values to remove.
// When finished, remaining tail of the vec is copied back to cover
// the hole, and the vector length is restored to the new length.
//
let len = self.len();
let start = match range.start_bound() {
Bound::Unbounded => 0,
Bound::Included(&i) => i,
Bound::Excluded(&i) => i.saturating_add(1),
};
let end = match range.end_bound() {
Bound::Excluded(&j) => j,
Bound::Included(&j) => j.saturating_add(1),
Bound::Unbounded => len,
};
self.drain_range(start, end)
}
fn drain_range(&mut self, start: usize, end: usize) -> Drain<T, CAP>
{
let len = self.len();
// bounds check happens here (before length is changed!)
let range_slice: *const _ = &self[start..end];
// Calling `set_len` creates a fresh and thus unique mutable references, making all
// older aliases we created invalid. So we cannot call that function.
self.len = start as LenUint;
unsafe {
Drain {
tail_start: end,
tail_len: len - end,
iter: (*range_slice).iter(),
vec: self as *mut _,
}
}
}
/// Return the inner fixed size array, if it is full to its capacity.
///
/// Return an `Ok` value with the array if length equals capacity,
/// return an `Err` with self otherwise.
pub fn into_inner(self) -> Result<[T; CAP], Self> {
if self.len() < self.capacity() {
Err(self)
} else {
unsafe { Ok(self.into_inner_unchecked()) }
}
}
/// Return the inner fixed size array.
///
/// Safety:
/// This operation is safe if and only if length equals capacity.
pub unsafe fn into_inner_unchecked(self) -> [T; CAP] {
debug_assert_eq!(self.len(), self.capacity());
let self_ = ManuallyDrop::new(self);
let array = ptr::read(self_.as_ptr() as *const [T; CAP]);
array
}
/// Returns the ArrayVec, replacing the original with a new empty ArrayVec.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut v = ArrayVec::from([0, 1, 2, 3]);
/// assert_eq!([0, 1, 2, 3], v.take().into_inner().unwrap());
/// assert!(v.is_empty());
/// ```
pub fn take(&mut self) -> Self {
mem::replace(self, Self::new())
}
/// Return a slice containing all elements of the vector.
pub fn as_slice(&self) -> &[T] {
ArrayVecImpl::as_slice(self)
}
/// Return a mutable slice containing all elements of the vector.
pub fn as_mut_slice(&mut self) -> &mut [T] {
ArrayVecImpl::as_mut_slice(self)
}
/// Return a raw pointer to the vector's buffer.
pub fn as_ptr(&self) -> *const T {
ArrayVecImpl::as_ptr(self)
}
/// Return a raw mutable pointer to the vector's buffer.
pub fn as_mut_ptr(&mut self) -> *mut T {
ArrayVecImpl::as_mut_ptr(self)
}
}
impl<T, const CAP: usize> ArrayVecImpl for ArrayVec<T, CAP> {
type Item = T;
const CAPACITY: usize = CAP;
fn len(&self) -> usize { self.len() }
unsafe fn set_len(&mut self, length: usize) {
debug_assert!(length <= CAP);
self.len = length as LenUint;
}
fn as_ptr(&self) -> *const Self::Item {
self.xs.as_ptr() as _
}
fn as_mut_ptr(&mut self) -> *mut Self::Item {
self.xs.as_mut_ptr() as _
}
}
impl<T, const CAP: usize> Deref for ArrayVec<T, CAP> {
type Target = [T];
#[inline]
fn deref(&self) -> &Self::Target {
self.as_slice()
}
}
impl<T, const CAP: usize> DerefMut for ArrayVec<T, CAP> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_mut_slice()
}
}
/// Create an `ArrayVec` from an array.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
/// assert_eq!(array.len(), 3);
/// assert_eq!(array.capacity(), 3);
/// ```
impl<T, const CAP: usize> From<[T; CAP]> for ArrayVec<T, CAP> {
#[track_caller]
fn from(array: [T; CAP]) -> Self {
let array = ManuallyDrop::new(array);
let mut vec = <ArrayVec<T, CAP>>::new();
unsafe {
(&*array as *const [T; CAP] as *const [MaybeUninit<T>; CAP])
.copy_to_nonoverlapping(&mut vec.xs as *mut [MaybeUninit<T>; CAP], 1);
vec.set_len(CAP);
}
vec
}
}
/// Try to create an `ArrayVec` from a slice. This will return an error if the slice was too big to
/// fit.
///
/// ```
/// use arrayvec::ArrayVec;
/// use std::convert::TryInto as _;
///
/// let array: ArrayVec<_, 4> = (&[1, 2, 3] as &[_]).try_into().unwrap();
/// assert_eq!(array.len(), 3);
/// assert_eq!(array.capacity(), 4);
/// ```
impl<T, const CAP: usize> std::convert::TryFrom<&[T]> for ArrayVec<T, CAP>
where T: Clone,
{
type Error = CapacityError;
fn try_from(slice: &[T]) -> Result<Self, Self::Error> {
if Self::CAPACITY < slice.len() {
Err(CapacityError::new(()))
} else {
let mut array = Self::new();
array.extend_from_slice(slice);
Ok(array)
}
}
}
/// Iterate the `ArrayVec` with references to each element.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let array = ArrayVec::from([1, 2, 3]);
///
/// for elt in &array {
/// // ...
/// }
/// ```
impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a ArrayVec<T, CAP> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter { self.iter() }
}
/// Iterate the `ArrayVec` with mutable references to each element.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
///
/// for elt in &mut array {
/// // ...
/// }
/// ```
impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a mut ArrayVec<T, CAP> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> Self::IntoIter { self.iter_mut() }
}
/// Iterate the `ArrayVec` with each element by value.
///
/// The vector is consumed by this operation.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// for elt in ArrayVec::from([1, 2, 3]) {
/// // ...
/// }
/// ```
impl<T, const CAP: usize> IntoIterator for ArrayVec<T, CAP> {
type Item = T;
type IntoIter = IntoIter<T, CAP>;
fn into_iter(self) -> IntoIter<T, CAP> {
IntoIter { index: 0, v: self, }
}
}
#[cfg(feature = "zeroize")]
/// "Best efforts" zeroing of the `ArrayVec`'s buffer when the `zeroize` feature is enabled.
///
/// The length is set to 0, and the buffer is dropped and zeroized.
/// Cannot ensure that previous moves of the `ArrayVec` did not leave values on the stack.
///
/// ```
/// use arrayvec::ArrayVec;
/// use zeroize::Zeroize;
/// let mut array = ArrayVec::from([1, 2, 3]);
/// array.zeroize();
/// assert_eq!(array.len(), 0);
/// let data = unsafe { core::slice::from_raw_parts(array.as_ptr(), array.capacity()) };
/// assert_eq!(data, [0, 0, 0]);
/// ```
impl<Z: zeroize::Zeroize, const CAP: usize> zeroize::Zeroize for ArrayVec<Z, CAP> {
fn zeroize(&mut self) {
// Zeroize all the contained elements.
self.iter_mut().zeroize();
// Drop all the elements and set the length to 0.
self.clear();
// Zeroize the backing array.
self.xs.zeroize();
}
}
/// By-value iterator for `ArrayVec`.
pub struct IntoIter<T, const CAP: usize> {
index: usize,
v: ArrayVec<T, CAP>,
}
impl<T, const CAP: usize> Iterator for IntoIter<T, CAP> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
if self.index == self.v.len() {
None
} else {
unsafe {
let index = self.index;
self.index = index + 1;
Some(ptr::read(self.v.get_unchecked_ptr(index)))
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.v.len() - self.index;
(len, Some(len))
}
}
impl<T, const CAP: usize> DoubleEndedIterator for IntoIter<T, CAP> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.index == self.v.len() {
None
} else {
unsafe {
let new_len = self.v.len() - 1;
self.v.set_len(new_len);
Some(ptr::read(self.v.get_unchecked_ptr(new_len)))
}
}
}
}
impl<T, const CAP: usize> ExactSizeIterator for IntoIter<T, CAP> { }
impl<T, const CAP: usize> Drop for IntoIter<T, CAP> {
fn drop(&mut self) {
// panic safety: Set length to 0 before dropping elements.
let index = self.index;
let len = self.v.len();
unsafe {
self.v.set_len(0);
let elements = slice::from_raw_parts_mut(
self.v.get_unchecked_ptr(index),
len - index);
ptr::drop_in_place(elements);
}
}
}
impl<T, const CAP: usize> Clone for IntoIter<T, CAP>
where T: Clone,
{
fn clone(&self) -> IntoIter<T, CAP> {
let mut v = ArrayVec::new();
v.extend_from_slice(&self.v[self.index..]);
v.into_iter()
}
}
impl<T, const CAP: usize> fmt::Debug for IntoIter<T, CAP>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(&self.v[self.index..])
.finish()
}
}
/// A draining iterator for `ArrayVec`.
pub struct Drain<'a, T: 'a, const CAP: usize> {
/// Index of tail to preserve
tail_start: usize,
/// Length of tail
tail_len: usize,
/// Current remaining range to remove
iter: slice::Iter<'a, T>,
vec: *mut ArrayVec<T, CAP>,
}
unsafe impl<'a, T: Sync, const CAP: usize> Sync for Drain<'a, T, CAP> {}
unsafe impl<'a, T: Send, const CAP: usize> Send for Drain<'a, T, CAP> {}
impl<'a, T: 'a, const CAP: usize> Iterator for Drain<'a, T, CAP> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|elt|
unsafe {
ptr::read(elt as *const _)
}
)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, T: 'a, const CAP: usize> DoubleEndedIterator for Drain<'a, T, CAP>
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back().map(|elt|
unsafe {
ptr::read(elt as *const _)
}
)
}
}
impl<'a, T: 'a, const CAP: usize> ExactSizeIterator for Drain<'a, T, CAP> {}
impl<'a, T: 'a, const CAP: usize> Drop for Drain<'a, T, CAP> {
fn drop(&mut self) {
// len is currently 0 so panicking while dropping will not cause a double drop.
// exhaust self first
while let Some(_) = self.next() { }
if self.tail_len > 0 {
unsafe {
let source_vec = &mut *self.vec;
// memmove back untouched tail, update to new length
let start = source_vec.len();
let tail = self.tail_start;
let ptr = source_vec.as_mut_ptr();
ptr::copy(ptr.add(tail), ptr.add(start), self.tail_len);
source_vec.set_len(start + self.tail_len);
}
}
}
}
struct ScopeExitGuard<T, Data, F>
where F: FnMut(&Data, &mut T)
{
value: T,
data: Data,
f: F,
}
impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F>
where F: FnMut(&Data, &mut T)
{
fn drop(&mut self) {
(self.f)(&self.data, &mut self.value)
}
}
/// Extend the `ArrayVec` with an iterator.
///
/// ***Panics*** if extending the vector exceeds its capacity.
impl<T, const CAP: usize> Extend<T> for ArrayVec<T, CAP> {
/// Extend the `ArrayVec` with an iterator.
///
/// ***Panics*** if extending the vector exceeds its capacity.
#[track_caller]
fn extend<I: IntoIterator<Item=T>>(&mut self, iter: I) {
unsafe {
self.extend_from_iter::<_, true>(iter)
}
}
}
#[inline(never)]
#[cold]
#[track_caller]
fn extend_panic() {
panic!("ArrayVec: capacity exceeded in extend/from_iter");
}
impl<T, const CAP: usize> ArrayVec<T, CAP> {
/// Extend the arrayvec from the iterable.
///
/// ## Safety
///
/// Unsafe because if CHECK is false, the length of the input is not checked.
/// The caller must ensure the length of the input fits in the capacity.
#[track_caller]
pub(crate) unsafe fn extend_from_iter<I, const CHECK: bool>(&mut self, iterable: I)
where I: IntoIterator<Item = T>
{
let take = self.capacity() - self.len();
let len = self.len();
let mut ptr = raw_ptr_add(self.as_mut_ptr(), len);
let end_ptr = raw_ptr_add(ptr, take);
// Keep the length in a separate variable, write it back on scope
// exit. To help the compiler with alias analysis and stuff.
// We update the length to handle panic in the iteration of the
// user's iterator, without dropping any elements on the floor.
let mut guard = ScopeExitGuard {
value: &mut self.len,
data: len,
f: move |&len, self_len| {
**self_len = len as LenUint;
}
};
let mut iter = iterable.into_iter();
loop {
if let Some(elt) = iter.next() {
if ptr == end_ptr && CHECK { extend_panic(); }
debug_assert_ne!(ptr, end_ptr);
ptr.write(elt);
ptr = raw_ptr_add(ptr, 1);
guard.data += 1;
} else {
return; // success
}
}
}
/// Extend the ArrayVec with clones of elements from the slice;
/// the length of the slice must be <= the remaining capacity in the arrayvec.
pub(crate) fn extend_from_slice(&mut self, slice: &[T])
where T: Clone
{
let take = self.capacity() - self.len();
debug_assert!(slice.len() <= take);
unsafe {
let slice = if take < slice.len() { &slice[..take] } else { slice };
self.extend_from_iter::<_, false>(slice.iter().cloned());
}
}
}
/// Rawptr add but uses arithmetic distance for ZST
unsafe fn raw_ptr_add<T>(ptr: *mut T, offset: usize) -> *mut T {
if mem::size_of::<T>() == 0 {
// Special case for ZST
ptr.cast::<u8>().wrapping_add(offset).cast()
} else {
ptr.add(offset)
}
}
/// Create an `ArrayVec` from an iterator.
///
/// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
impl<T, const CAP: usize> iter::FromIterator<T> for ArrayVec<T, CAP> {
/// Create an `ArrayVec` from an iterator.
///
/// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> Self {
let mut array = ArrayVec::new();
array.extend(iter);
array
}
}
impl<T, const CAP: usize> Clone for ArrayVec<T, CAP>
where T: Clone
{
fn clone(&self) -> Self {
self.iter().cloned().collect()
}
fn clone_from(&mut self, rhs: &Self) {
// recursive case for the common prefix
let prefix = cmp::min(self.len(), rhs.len());
self[..prefix].clone_from_slice(&rhs[..prefix]);
if prefix < self.len() {
// rhs was shorter
self.truncate(prefix);
} else {
let rhs_elems = &rhs[self.len()..];
self.extend_from_slice(rhs_elems);
}
}
}
impl<T, const CAP: usize> Hash for ArrayVec<T, CAP>
where T: Hash
{
fn hash<H: Hasher>(&self, state: &mut H) {
Hash::hash(&**self, state)
}
}
impl<T, const CAP: usize> PartialEq for ArrayVec<T, CAP>
where T: PartialEq
{
fn eq(&self, other: &Self) -> bool {
**self == **other
}
}
impl<T, const CAP: usize> PartialEq<[T]> for ArrayVec<T, CAP>
where T: PartialEq
{
fn eq(&self, other: &[T]) -> bool {
**self == *other
}
}
impl<T, const CAP: usize> Eq for ArrayVec<T, CAP> where T: Eq { }
impl<T, const CAP: usize> Borrow<[T]> for ArrayVec<T, CAP> {
fn borrow(&self) -> &[T] { self }
}
impl<T, const CAP: usize> BorrowMut<[T]> for ArrayVec<T, CAP> {
fn borrow_mut(&mut self) -> &mut [T] { self }
}
impl<T, const CAP: usize> AsRef<[T]> for ArrayVec<T, CAP> {
fn as_ref(&self) -> &[T] { self }
}
impl<T, const CAP: usize> AsMut<[T]> for ArrayVec<T, CAP> {
fn as_mut(&mut self) -> &mut [T] { self }
}
impl<T, const CAP: usize> fmt::Debug for ArrayVec<T, CAP> where T: fmt::Debug {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
}
impl<T, const CAP: usize> Default for ArrayVec<T, CAP> {
/// Return an empty array
fn default() -> ArrayVec<T, CAP> {
ArrayVec::new()
}
}
impl<T, const CAP: usize> PartialOrd for ArrayVec<T, CAP> where T: PartialOrd {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
(**self).partial_cmp(other)
}
fn lt(&self, other: &Self) -> bool {
(**self).lt(other)
}
fn le(&self, other: &Self) -> bool {
(**self).le(other)
}
fn ge(&self, other: &Self) -> bool {
(**self).ge(other)
}
fn gt(&self, other: &Self) -> bool {
(**self).gt(other)
}
}
impl<T, const CAP: usize> Ord for ArrayVec<T, CAP> where T: Ord {
fn cmp(&self, other: &Self) -> cmp::Ordering {
(**self).cmp(other)
}
}
#[cfg(feature="std")]
/// `Write` appends written data to the end of the vector.
///
/// Requires `features="std"`.
impl<const CAP: usize> io::Write for ArrayVec<u8, CAP> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let len = cmp::min(self.remaining_capacity(), data.len());
let _result = self.try_extend_from_slice(&data[..len]);
debug_assert!(_result.is_ok());
Ok(len)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(feature="serde")]
/// Requires crate feature `"serde"`
impl<T: Serialize, const CAP: usize> Serialize for ArrayVec<T, CAP> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer
{
serializer.collect_seq(self)
}
}
#[cfg(feature="serde")]
/// Requires crate feature `"serde"`
impl<'de, T: Deserialize<'de>, const CAP: usize> Deserialize<'de> for ArrayVec<T, CAP> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: Deserializer<'de>
{
use serde::de::{Visitor, SeqAccess, Error};
use std::marker::PhantomData;
struct ArrayVecVisitor<'de, T: Deserialize<'de>, const CAP: usize>(PhantomData<(&'de (), [T; CAP])>);
impl<'de, T: Deserialize<'de>, const CAP: usize> Visitor<'de> for ArrayVecVisitor<'de, T, CAP> {
type Value = ArrayVec<T, CAP>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "an array with no more than {} items", CAP)
}
fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error>
where SA: SeqAccess<'de>,
{
let mut values = ArrayVec::<T, CAP>::new();
while let Some(value) = seq.next_element()? {
if let Err(_) = values.try_push(value) {
return Err(SA::Error::invalid_length(CAP + 1, &self));
}
}
Ok(values)
}
}
deserializer.deserialize_seq(ArrayVecVisitor::<T, CAP>(PhantomData))
}
}