fdf/dispatcher.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Safe bindings for the driver runtime dispatcher stable ABI
use fdf_sys::*;
use core::cell::UnsafeCell;
use core::ffi;
use core::future::Future;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use core::ptr::{addr_of_mut, null_mut, NonNull};
use core::task::Context;
use std::sync::{Arc, Mutex};
use zx::Status;
use futures::future::{BoxFuture, FutureExt};
use futures::task::{waker_ref, ArcWake};
pub use fdf_sys::fdf_dispatcher_t;
pub trait ShutdownObserverFn: Fn(DispatcherRef<'_>) + Send + Sync + 'static {}
impl<T> ShutdownObserverFn for T where T: Fn(DispatcherRef<'_>) + Send + Sync + 'static {}
/// A builder for [`Dispatcher`]s
#[derive(Default)]
pub struct DispatcherBuilder {
options: u32,
name: String,
scheduler_role: String,
shutdown_observer: Option<ShutdownObserver>,
}
impl DispatcherBuilder {
/// See `FDF_DISPATCHER_OPTION_UNSYNCHRONIZED` in the C API
const UNSYNCHRONIZED: u32 = 0b01;
/// See `FDF_DISPATCHER_OPTION_ALLOW_SYNC_CALLS` in the C API
const ALLOW_THREAD_BLOCKING: u32 = 0b10;
/// Creates a new [`DispatcherBuilder`] that can be used to configure a new dispatcher.
/// For more information on the threading-related flags for the dispatcher, see
/// https://fuchsia.dev/fuchsia-src/concepts/drivers/driver-dispatcher-and-threads
pub fn new() -> Self {
Self::default()
}
/// Sets whether parallel callbacks in the callbacks set in the dispatcher are allowed. May
/// not be set with [`Self::allow_thread_blocking`].
///
/// See https://fuchsia.dev/fuchsia-src/concepts/drivers/driver-dispatcher-and-threads
/// for more information on the threading model of driver dispatchers.
pub fn unsynchronized(mut self) -> Self {
assert!(
!self.allows_thread_blocking(),
"you may not create an unsynchronized dispatcher that allows synchronous calls"
);
self.options = self.options | Self::UNSYNCHRONIZED;
self
}
/// Whether or not this is an unsynchronized dispatcher
pub fn is_unsynchronized(&self) -> bool {
(self.options & Self::UNSYNCHRONIZED) == Self::UNSYNCHRONIZED
}
/// This dispatcher may not share zircon threads with other drivers. May not be set with
/// [`Self::unsynchronized`].
///
/// See https://fuchsia.dev/fuchsia-src/concepts/drivers/driver-dispatcher-and-threads
/// for more information on the threading model of driver dispatchers.
pub fn allow_thread_blocking(mut self) -> Self {
assert!(
!self.is_unsynchronized(),
"you may not create an unsynchronized dispatcher that allows synchronous calls"
);
self.options = self.options | Self::ALLOW_THREAD_BLOCKING;
self
}
// Whether or not this dispatcher allows synchronous calls
pub fn allows_thread_blocking(&self) -> bool {
(self.options & Self::ALLOW_THREAD_BLOCKING) == Self::ALLOW_THREAD_BLOCKING
}
/// A descriptive name for this dispatcher that is used in debug output and process
/// lists.
pub fn name(mut self, name: &str) -> Self {
self.name = name.to_string();
self
}
/// A hint string for the runtime that may or may not impact the priority the work scheduled
/// by this dispatcher is handled at. It may or may not impact the ability for other drivers
/// to share zircon threads with the dispatcher.
pub fn scheduler_role(mut self, role: &str) -> Self {
self.scheduler_role = role.to_string();
self
}
/// A callback to be called before after the dispatcher has completed asynchronous shutdown.
pub fn shutdown_observer<F: ShutdownObserverFn>(mut self, shutdown_observer: F) -> Self {
self.shutdown_observer = Some(ShutdownObserver::new(shutdown_observer));
self
}
/// Create the dispatcher as configured by this object. This must be called from a
/// thread managed by the driver runtime. The dispatcher returned is owned by the caller,
/// and will initiate asynchronous shutdown when the object is dropped unless
/// [`Dispatcher::release`] is called on it to convert it into an unowned [`DispatcherRef`].
pub fn create(self) -> Result<Dispatcher, Status> {
let mut out_dispatcher = null_mut();
let options = self.options;
let name = self.name.as_ptr() as *mut ffi::c_char;
let name_len = self.name.len();
let scheduler_role = self.scheduler_role.as_ptr() as *mut ffi::c_char;
let scheduler_role_len = self.scheduler_role.len();
let observer =
self.shutdown_observer.unwrap_or_else(|| ShutdownObserver::new(|_| {})).into_ptr();
// SAFETY: all arguments point to memory that will be available for the duration
// of the call, except `observer`, which will be available until it is unallocated
// by the dispatcher exit handler.
Status::ok(unsafe {
fdf_dispatcher_create(
options,
name,
name_len,
scheduler_role,
scheduler_role_len,
observer,
&mut out_dispatcher,
)
})?;
// SAFETY: `out_dispatcher` is valid by construction if `fdf_dispatcher_create` returns
// ZX_OK.
Ok(Dispatcher(unsafe { NonNull::new_unchecked(out_dispatcher) }))
}
/// As with [`Self::create`], this creates a new dispatcher as configured by this object, but
/// instead of returning an owned reference it immediately releases the reference to be
/// managed by the driver runtime.
pub fn create_released(self) -> Result<DispatcherRef<'static>, Status> {
self.create().map(Dispatcher::release)
}
}
#[derive(Debug)]
pub struct Dispatcher(pub(crate) NonNull<fdf_dispatcher_t>);
// SAFETY: The api of fdf_dispatcher_t is thread safe.
unsafe impl Send for Dispatcher {}
unsafe impl Sync for Dispatcher {}
impl Dispatcher {
/// Creates a dispatcher ref from a raw handle.
///
/// # Safety
///
/// Caller is responsible for ensuring that the given handle is valid and
/// not owned by any other wrapper that will free it at an arbitrary
/// time.
pub(crate) unsafe fn from_raw(handle: NonNull<fdf_dispatcher_t>) -> Self {
Self(handle)
}
fn get_raw_flags(&self) -> u32 {
// SAFETY: the inner fdf_dispatcher_t is valid by construction
unsafe { fdf_dispatcher_get_options(self.0.as_ptr()) }
}
/// Whether this dispatcher's tasks and futures can run on multiple threads at the same time.
pub fn is_unsynchronized(&self) -> bool {
(self.get_raw_flags() & DispatcherBuilder::UNSYNCHRONIZED) != 0
}
/// Whether this dispatcher is allowed to call blocking functions or not
pub fn allows_thread_blocking(&self) -> bool {
(self.get_raw_flags() & DispatcherBuilder::ALLOW_THREAD_BLOCKING) != 0
}
pub fn post_task_sync<'a>(&self, p: impl TaskCallback<'a>) -> Result<(), Status> {
// SAFETY: the fdf dispatcher is valid by construction and can provide an async dispatcher.
let async_dispatcher = unsafe { fdf_dispatcher_get_async_dispatcher(self.0.as_ptr()) };
let task_arc = Arc::new(UnsafeCell::new(TaskFunc {
task: async_task { handler: Some(TaskFunc::call), ..Default::default() },
dispatcher: async_dispatcher,
func: Box::new(p),
}));
let task_cell = Arc::into_raw(task_arc);
// SAFETY: we need a raw mut pointer to give to async_post_task. From
// when we call that function to when the task is cancelled or the
// callback is called, the driver runtime owns the contents of that
// object and we will not manipulate it. So even though the Arc only
// gives us a shared reference, it's fine to give the runtime a
// mutable pointer to it.
let res = unsafe {
let task_ptr = addr_of_mut!((*UnsafeCell::raw_get(task_cell)).task);
async_post_task(async_dispatcher, task_ptr)
};
if res != ZX_OK {
// SAFETY: `TaskFunc::call` will never be called now so dispose of
// the long-lived reference we just created.
unsafe { Arc::decrement_strong_count(task_cell) }
Err(Status::from_raw(res))
} else {
Ok(())
}
}
pub fn spawn_task<'a>(
&'a self,
future: impl Future<Output = ()> + 'a + Send,
) -> Result<(), Status> {
let task = Arc::new(Task {
future: Mutex::new(Some(future.boxed())),
dispatcher: ManuallyDrop::new(Dispatcher(self.0)),
});
task.queue()
}
/// Releases ownership over this dispatcher and returns a [`DispatcherRef`]
/// that can be used to access it. The lifetime of this reference is static because it will
/// exist so long as this current driver is loaded, but the driver runtime will shut it down
/// when the driver is unloaded.
pub fn release(self) -> DispatcherRef<'static> {
DispatcherRef(ManuallyDrop::new(self), PhantomData)
}
/// Returns a [`DispatcherRef`] that references this dispatcher with a lifetime constrained by
/// `self`.
pub fn as_ref(&self) -> DispatcherRef<'_> {
DispatcherRef(ManuallyDrop::new(Dispatcher(self.0)), PhantomData)
}
}
impl Drop for Dispatcher {
fn drop(&mut self) {
// SAFETY: we only ever provide an owned `Dispatcher` to one owner, so when
// that one is dropped we can invoke the shutdown of the dispatcher
unsafe { fdf_dispatcher_shutdown_async(self.0.as_mut()) }
}
}
/// An unowned reference to a driver runtime dispatcher such as is produced by calling
/// [`Dispatcher::release`]. When this object goes out of scope it won't shut down the dispatcher,
/// leaving that up to the driver runtime or another owner.
#[derive(Debug)]
pub struct DispatcherRef<'a>(ManuallyDrop<Dispatcher>, PhantomData<&'a Dispatcher>);
impl<'a> DispatcherRef<'a> {
/// Creates a dispatcher ref from a raw handle.
///
/// # Safety
///
/// Caller is responsible for ensuring that the given handle is valid for
/// the lifetime `'a`.
pub unsafe fn from_raw(handle: NonNull<fdf_dispatcher_t>) -> Self {
// SAFETY: Caller promises the handle is valid.
Self(ManuallyDrop::new(unsafe { Dispatcher::from_raw(handle) }), PhantomData)
}
}
impl<'a> Clone for DispatcherRef<'a> {
fn clone(&self) -> Self {
Self(ManuallyDrop::new(Dispatcher(self.0 .0)), PhantomData)
}
}
impl<'a> core::ops::Deref for DispatcherRef<'a> {
type Target = Dispatcher;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<'a> core::ops::DerefMut for DispatcherRef<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
pub trait TaskCallback<'a>: FnOnce(Status) + 'a + Send + Sync {}
impl<'a, T> TaskCallback<'a> for T where T: FnOnce(Status) + 'a + Send + Sync {}
struct Task<'a> {
future: Mutex<Option<BoxFuture<'a, ()>>>,
dispatcher: ManuallyDrop<Dispatcher>,
}
impl<'a> ArcWake for Task<'a> {
fn wake_by_ref(arc_self: &Arc<Self>) {
match arc_self.queue() {
Err(e) if e == Status::from_raw(ZX_ERR_BAD_STATE) => {
// the dispatcher is shutting down so drop the future, if there
// is one, to cancel it.
let mut future_slot = arc_self.future.lock().unwrap();
core::mem::drop(future_slot.take());
}
res => res.expect("Unexpected error waking dispatcher task"),
}
}
}
impl<'a> Task<'a> {
/// Posts a task to progress the currently stored future. The task will
/// consume the future if the future is ready after the next poll.
/// Otherwise, the future is kept to be polled again after being woken.
fn queue(self: &Arc<Self>) -> Result<(), Status> {
let arc_self = self.clone();
self.dispatcher
.post_task_sync(move |status| {
let mut future_slot = arc_self.future.lock().unwrap();
// if we're cancelled, drop the future we're waiting on.
if status != Status::from_raw(ZX_OK) {
core::mem::drop(future_slot.take());
return;
}
let Some(mut future) = future_slot.take() else {
return;
};
let waker = waker_ref(&arc_self);
let context = &mut Context::from_waker(&waker);
if future.as_mut().poll(context).is_pending() {
*future_slot = Some(future);
}
})
.map(|_| ())
}
}
#[repr(C)]
struct TaskFunc<'a> {
task: async_task,
dispatcher: *mut async_dispatcher,
func: Box<dyn TaskCallback<'a>>,
}
impl<'a> TaskFunc<'a> {
extern "C" fn call(_dispatcher: *mut async_dispatcher, task: *mut async_task, status: i32) {
// SAFETY: the async api promises that this function will only be called
// up to once, so we can reconstitute the `Arc` and let it get dropped.
let task = unsafe { Arc::from_raw(task as *const UnsafeCell<Self>) };
// SAFETY: if we can't get a mut ref from the arc, then the task is already
// being cancelled, so we don't want to call it.
if let Some(task) = Arc::try_unwrap(task).ok() {
(task.into_inner().func)(Status::from_raw(status));
}
}
}
/// A shutdown observer for [`fdf_dispatcher_create`] that can call any kind of callback instead of
/// just a C-compatible function when a dispatcher is shutdown.
///
/// # Safety
///
/// This object relies on a specific layout to allow it to be cast between a
/// `*mut fdf_dispatcher_shutdown_observer` and a `*mut ShutdownObserver`. To that end,
/// it is important that this struct stay both `#[repr(C)]` and that `observer` be its first member.
#[repr(C)]
struct ShutdownObserver {
observer: fdf_dispatcher_shutdown_observer,
shutdown_fn: Box<dyn ShutdownObserverFn>,
}
impl ShutdownObserver {
/// Creates a new [`ShutdownObserver`] with `f` as the callback to run when a dispatcher
/// finishes shutting down.
fn new<F: ShutdownObserverFn>(f: F) -> Self {
let shutdown_fn = Box::new(f);
Self {
observer: fdf_dispatcher_shutdown_observer { handler: Some(Self::handler) },
shutdown_fn,
}
}
/// Turns this object into a stable pointer suitable for passing to [`fdf_dispatcher_create`]
/// by wrapping it in a [`Box`] and leaking it to be reconstituded by [`Self::handler`] when
/// the dispatcher is shut down.
fn into_ptr(self) -> *mut fdf_dispatcher_shutdown_observer {
// Note: this relies on the assumption that `self.observer` is at the beginning of the
// struct.
Box::leak(Box::new(self)) as *mut _ as *mut _
}
/// The callback that is registered with the dispatcher that will be called when the dispatcher
/// is shut down.
///
/// # Safety
///
/// This function should only ever be called by the driver runtime at dispatcher shutdown
/// time, must only ever be called once for any given [`ShutdownObserver`] object, and
/// that [`ShutdownObserver`] object must have previously been made into a pointer by
/// [`Self::into_ptr`].
unsafe extern "C" fn handler(
dispatcher: *mut fdf_dispatcher_t,
observer: *mut fdf_dispatcher_shutdown_observer_t,
) {
// SAFETY: The driver framework promises to only call this function once, so we can
// safely take ownership of the [`Box`] and deallocate it when this function ends.
let observer = unsafe { Box::from_raw(observer as *mut ShutdownObserver) };
// SAFETY: `dispatcher` is the dispatcher being shut down, so it can't be non-null.
let dispatcher_ref = DispatcherRef(
ManuallyDrop::new(Dispatcher(unsafe { NonNull::new_unchecked(dispatcher) })),
PhantomData,
);
(observer.shutdown_fn)(dispatcher_ref);
// SAFETY: we only shutdown the dispatcher when the dispatcher is dropped, and we only ever
// instantiate one owned copy of `Dispatcher` for a given dispatcher.
unsafe { fdf_dispatcher_destroy(dispatcher) };
}
}
pub mod test {
use core::ffi::{c_char, c_void};
use core::ptr::null_mut;
use std::sync::{mpsc, Once};
use super::*;
static GLOBAL_DRIVER_ENV: Once = Once::new();
pub fn ensure_driver_env() {
GLOBAL_DRIVER_ENV.call_once(|| {
// SAFETY: calling fdf_env_start, which does not have any soundness
// concerns for rust code, and this is only used in tests.
unsafe {
assert_eq!(fdf_env_start(), ZX_OK);
}
});
}
pub fn with_raw_dispatcher<T>(name: &str, p: impl for<'a> FnOnce(&'a Dispatcher) -> T) -> T {
ensure_driver_env();
let (shutdown_tx, shutdown_rx) = mpsc::channel();
let mut dispatcher = null_mut();
let mut observer = ShutdownObserver::new(move |dispatcher| {
// SAFETY: we verify that the dispatcher has no tasks left queued in it,
// just because this is testing code.
assert!(!unsafe { fdf_env_dispatcher_has_queued_tasks(dispatcher.0 .0.as_ptr()) });
shutdown_tx.send(()).unwrap();
})
.into_ptr();
// SAFETY: The pointers we pass to this function are all stable for the
// duration of this function, and are not available to copy or clone to
// client code (only through a ref to the non-`Clone`` `Dispatcher`
// wrapper).
let res = unsafe {
fdf_env_dispatcher_create_with_owner(
&mut observer as *mut _ as *mut c_void,
DispatcherBuilder::ALLOW_THREAD_BLOCKING,
name.as_ptr() as *const c_char,
name.len(),
"".as_ptr() as *const c_char,
0 as usize,
observer,
&mut dispatcher,
)
};
assert_eq!(res, ZX_OK);
let dispatcher = Dispatcher(NonNull::new(dispatcher).unwrap());
let res = p(&dispatcher);
// this initiates the dispatcher shutdown on a driver runtime
// thread. When all tasks on the dispatcher have completed, the wait
// on the shutdown_rx below will end and we can tear it down.
drop(dispatcher);
shutdown_rx.recv().unwrap();
res
}
}
#[cfg(test)]
mod tests {
use super::test::*;
use super::*;
use std::sync::mpsc;
use futures::channel::mpsc as async_mpsc;
use futures::{SinkExt, StreamExt};
#[test]
fn start_test_dispatcher() {
with_raw_dispatcher("testing", |dispatcher| {
println!("hello {dispatcher:?}");
})
}
#[test]
fn post_task_on_dispatcher() {
with_raw_dispatcher("testing task", |dispatcher| {
let (tx, rx) = mpsc::channel();
dispatcher
.post_task_sync(move |status| {
assert_eq!(status, Status::from_raw(ZX_OK));
tx.send(status).unwrap();
})
.unwrap();
assert_eq!(rx.recv().unwrap(), Status::from_raw(ZX_OK));
});
}
#[test]
fn post_task_on_subdispatcher() {
let (shutdown_tx, shutdown_rx) = mpsc::channel();
with_raw_dispatcher("testing task top level", move |dispatcher| {
let (tx, rx) = mpsc::channel();
let (inner_tx, inner_rx) = mpsc::channel();
dispatcher
.post_task_sync(move |status| {
assert_eq!(status, Status::from_raw(ZX_OK));
let inner = DispatcherBuilder::new()
.name("testing task second level")
.scheduler_role("")
.allow_thread_blocking()
.shutdown_observer(move |_dispatcher| {
println!("shutdown observer called");
shutdown_tx.send(1).unwrap();
})
.create()
.unwrap();
inner
.post_task_sync(move |status| {
assert_eq!(status, Status::from_raw(ZX_OK));
tx.send(status).unwrap();
})
.unwrap();
// we want to make sure the inner dispatcher lives long
// enough to run the task, so we sent it out to the outer
// closure.
inner_tx.send(inner).unwrap();
})
.unwrap();
assert_eq!(rx.recv().unwrap(), Status::from_raw(ZX_OK));
inner_rx.recv().unwrap();
});
assert_eq!(shutdown_rx.recv().unwrap(), 1);
}
async fn ping(mut tx: async_mpsc::Sender<u8>, mut rx: async_mpsc::Receiver<u8>) {
println!("starting ping!");
tx.send(0).await.unwrap();
while let Some(next) = rx.next().await {
println!("ping! {next}");
tx.send(next + 1).await.unwrap();
}
}
async fn pong(
fin_tx: std::sync::mpsc::Sender<()>,
mut tx: async_mpsc::Sender<u8>,
mut rx: async_mpsc::Receiver<u8>,
) {
println!("starting pong!");
while let Some(next) = rx.next().await {
println!("pong! {next}");
if next > 10 {
println!("bye!");
break;
}
tx.send(next + 1).await.unwrap();
}
fin_tx.send(()).unwrap();
}
#[test]
fn async_ping_pong() {
with_raw_dispatcher("async ping pong", |dispatcher| {
let (fin_tx, fin_rx) = mpsc::channel();
let (ping_tx, pong_rx) = async_mpsc::channel(10);
let (pong_tx, ping_rx) = async_mpsc::channel(10);
dispatcher.spawn_task(ping(ping_tx, ping_rx)).unwrap();
dispatcher.spawn_task(pong(fin_tx, pong_tx, pong_rx)).unwrap();
fin_rx.recv().expect("to receive final value");
});
}
async fn slow_pong(
fin_tx: std::sync::mpsc::Sender<()>,
mut tx: async_mpsc::Sender<u8>,
mut rx: async_mpsc::Receiver<u8>,
) {
use zx::MonotonicDuration;
println!("starting pong!");
while let Some(next) = rx.next().await {
println!("pong! {next}");
fuchsia_async::Timer::new(fuchsia_async::MonotonicInstant::after(
MonotonicDuration::from_seconds(1),
))
.await;
if next > 10 {
println!("bye!");
break;
}
tx.send(next + 1).await.unwrap();
}
fin_tx.send(()).unwrap();
}
#[test]
fn mixed_executor_async_ping_pong() {
with_raw_dispatcher("async ping pong", |dispatcher| {
let (fin_tx, fin_rx) = mpsc::channel();
let (ping_tx, pong_rx) = async_mpsc::channel(10);
let (pong_tx, ping_rx) = async_mpsc::channel(10);
// spawn ping on the driver dispatcher
dispatcher.spawn_task(ping(ping_tx, ping_rx)).unwrap();
// and run pong on the fuchsia_async executor
let mut executor = fuchsia_async::LocalExecutor::new();
executor.run_singlethreaded(slow_pong(fin_tx, pong_tx, pong_rx));
fin_rx.recv().expect("to receive final value");
});
}
}