fdf/channel.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Safe bindings for the driver runtime channel stable ABI
use core::future::Future;
use zx::Status;
use crate::{Arena, ArenaBox, DispatcherRef, DriverHandle, Message, MixedHandle};
use fdf_sys::*;
use core::marker::PhantomData;
use core::mem::{size_of_val, MaybeUninit};
use core::num::NonZero;
use core::pin::Pin;
use core::ptr::{null_mut, NonNull};
use core::task::{Context, Poll, Waker};
use std::sync::{Arc, Mutex};
pub use fdf_sys::fdf_handle_t;
/// Implements a message channel through the Fuchsia Driver Runtime
#[derive(Debug, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub struct Channel<T: ?Sized + 'static>(pub(crate) DriverHandle, PhantomData<Message<T>>);
impl<T: ?Sized + 'static> Channel<T> {
/// Creates a new channel pair that can be used to send messages of type `T`
/// between threads managed by the driver runtime.
pub fn create() -> Result<(Self, Self), Status> {
let mut channel1 = 0;
let mut channel2 = 0;
Status::ok(unsafe { fdf_channel_create(0, &mut channel1, &mut channel2) })?;
// SAFETY: if fdf_channel_create returned ZX_OK, it will have placed
// valid channel handles that must be non-zero.
unsafe {
Ok((
Self::from_handle_unchecked(NonZero::new_unchecked(channel1)),
Self::from_handle_unchecked(NonZero::new_unchecked(channel2)),
))
}
}
/// Takes the inner handle to the channel. The caller is responsible for ensuring
/// that the handle is freed.
pub fn into_driver_handle(self) -> DriverHandle {
self.0
}
/// Initializes a [`Channel`] object from the given non-zero handle.
///
/// # Safety
///
/// The caller must ensure that the handle is not invalid and that it is
/// part of a driver runtime channel pair of type `T`.
unsafe fn from_handle_unchecked(handle: NonZero<fdf_handle_t>) -> Self {
// SAFETY: caller is responsible for ensuring that it is a valid channel
Self(unsafe { DriverHandle::new_unchecked(handle) }, PhantomData)
}
/// Initializes a [`Channel`] object from the given [`DriverHandle`],
/// assuming that it is a channel of type `T`.
///
/// # Safety
///
/// The caller must ensure that the handle is a [`Channel`]-based handle that is
/// using type `T` as its wire format.
pub unsafe fn from_driver_handle(handle: DriverHandle) -> Self {
Self(handle, PhantomData)
}
/// Writes the [`Message`] given to the channel. This will complete asynchronously and can't
/// be cancelled.
///
/// The channel will take ownership of the data and handles passed in,
pub fn write(&self, message: Message<T>) -> Result<(), Status> {
// get the sizes while the we still have refs to the data and handles
let data_len = message.data().map_or(0, |data| size_of_val(&*data) as u32);
let handles_count = message.handles().map_or(0, |handles| handles.len() as u32);
let (arena, data, handles) = message.into_raw();
// transform the `Option<NonNull<T>>` into just `*mut T`
let data_ptr = data.map_or(null_mut(), |data| data.cast().as_ptr());
let handles_ptr = handles.map_or(null_mut(), |handles| handles.cast().as_ptr());
// SAFETY:
// - Normally, we could be reading uninit bytes here. However, as long as fdf_channel_write
// doesn't allow cross-LTO then it won't care whether the bytes are initialized.
// - The `Message` will generally only construct correctly if the data and handles pointers
// inside it are from the arena it holds, but just in case `fdf_channel_write` will check
// that we are using the correct arena so we do not need to re-verify that they are from
// the same arena.
Status::ok(unsafe {
fdf_channel_write(
self.0.get_raw().get(),
0,
arena.as_ptr(),
data_ptr,
data_len,
handles_ptr,
handles_count,
)
})?;
// SAFETY: this is the valid-by-contruction arena we were passed in through the [`Message`]
// object, and now that we have completed `fdf_channel_write` it is safe to drop our copy
// of it.
unsafe { fdf_arena_drop_ref(arena.as_ptr()) };
Ok(())
}
/// Shorthand for calling [`Self::write`] with the result of [`Message::new_with`]
pub fn write_with<F>(&self, arena: Arena, f: F) -> Result<(), Status>
where
F: for<'a> FnOnce(
&'a Arena,
)
-> (Option<ArenaBox<'a, T>>, Option<ArenaBox<'a, [Option<MixedHandle>]>>),
{
self.write(Message::new_with(arena, f))
}
/// Shorthand for calling [`Self::write`] with the result of [`Message::new_with`]
pub fn write_with_data<F>(&self, arena: Arena, f: F) -> Result<(), Status>
where
F: for<'a> FnOnce(&'a Arena) -> ArenaBox<'a, T>,
{
self.write(Message::new_with_data(arena, f))
}
/// Attempts to read from the channel, returning a [`Message`] object that can be used to
/// access or take the data received if there was any. This is the basic building block
/// on which the other `try_read_*` methods are built.
fn try_read_raw<'a>(&self) -> Result<Option<Message<[MaybeUninit<u8>]>>, Status> {
let mut out_arena = null_mut();
let mut out_data = null_mut();
let mut out_num_bytes = 0;
let mut out_handles = null_mut();
let mut out_num_handles = 0;
Status::ok(unsafe {
fdf_channel_read(
self.0.get_raw().get(),
0,
&mut out_arena,
&mut out_data,
&mut out_num_bytes,
&mut out_handles,
&mut out_num_handles,
)
})?;
// if no arena was returned, that means no data was returned.
if out_arena == null_mut() {
return Ok(None);
}
// SAFETY: we just checked that the `out_arena` is non-null
let arena = Arena(unsafe { NonNull::new_unchecked(out_arena) });
let data_ptr = if !out_data.is_null() {
let ptr = core::ptr::slice_from_raw_parts_mut(out_data.cast(), out_num_bytes as usize);
// SAFETY: we just checked that the pointer was non-null, the slice version of it should
// be too.
Some(unsafe { ArenaBox::new(NonNull::new_unchecked(ptr)) })
} else {
None
};
let handles_ptr = if !out_handles.is_null() {
let ptr =
core::ptr::slice_from_raw_parts_mut(out_handles.cast(), out_num_handles as usize);
// SAFETY: we just checked that the pointer was non-null, the slice version of it should
// be too.
Some(unsafe { ArenaBox::new(NonNull::new_unchecked(ptr)) })
} else {
None
};
Ok(Some(unsafe { Message::new_unchecked(arena, data_ptr, handles_ptr) }))
}
/// Reads a message from the channel asynchronously
///
/// # Panic
///
/// Panics if this is not run from a driver framework dispatcher.
fn read_raw<'a>(&'a self, dispatcher: DispatcherRef<'a>) -> ReadMessageRawFut<'a, T> {
ReadMessageRawFut {
op: Arc::new(ReadMessageRawOp {
read_op: fdf_channel_read {
// SAFETY: the lifetime of this future is constrained by the lifetime of the
// channel through lifetime `'a`, and the read op will be cancelled if this
// future is dropped before being fulfilled.
channel: unsafe { self.0.get_raw() }.get(),
handler: Some(ReadMessageRawOp::handler),
..Default::default()
},
waker: Mutex::new(None),
}),
channel: self,
dispatcher,
}
}
}
impl<T> Channel<T> {
/// Attempts to read an object of type `T` and a handle set from the channel
pub fn try_read<'a>(&self) -> Result<Option<Message<T>>, Status> {
// read a message from the channel
let Some(message) = self.try_read_raw()? else {
return Ok(None);
};
// SAFETY: It is an invariant of Channel<T> that messages sent or received are always of
// type T.
Ok(Some(unsafe { message.cast_unchecked() }))
}
/// Reads an object of type `T` and a handle set from the channel asynchronously
pub async fn read(&self, dispatcher: DispatcherRef<'_>) -> Result<Option<Message<T>>, Status> {
let Some(message) = self.read_raw(dispatcher).await? else {
return Ok(None);
};
// SAFETY: It is an invariant of Channel<T> that messages sent or received are always of
// type T.
Ok(Some(unsafe { message.cast_unchecked() }))
}
}
impl Channel<[u8]> {
/// Attempts to read an object of type `T` and a handle set from the channel
pub fn try_read_bytes<'a>(&self) -> Result<Option<Message<[u8]>>, Status> {
// read a message from the channel
let Some(message) = self.try_read_raw()? else {
return Ok(None);
};
// SAFETY: It is an invariant of Channel<[u8]> that messages sent or received are always of
// type [u8].
Ok(Some(unsafe { message.assume_init() }))
}
/// Reads a slice of type `T` and a handle set from the channel asynchronously
pub async fn read_bytes(
&self,
dispatcher: DispatcherRef<'_>,
) -> Result<Option<Message<[u8]>>, Status> {
// read a message from the channel
let Some(message) = self.read_raw(dispatcher).await? else {
return Ok(None);
};
// SAFETY: It is an invariant of Channel<[u8]> that messages sent or received are always of
// type [u8].
Ok(Some(unsafe { message.assume_init() }))
}
}
impl<T> From<Channel<T>> for MixedHandle {
fn from(value: Channel<T>) -> Self {
MixedHandle::from(value.0)
}
}
/// This struct is shared between the future and the driver runtime, with the first field
/// being managed by the driver runtime and the second by the future. It will be held by two
/// [`Arc`]s, one for each of the future and the runtime.
///
/// The future's [`Arc`] will be dropped when the future is either fulfilled or cancelled through
/// normal [`Drop`] of the future.
///
/// The runtime's [`Arc`]'s dropping varies depending on whether the dispatcher it was registered on
/// was synchronized or not, and whether it was cancelled or not. The callback will only ever be
/// called *up to* one time.
///
/// If the dispatcher is synchronized, then the callback will *only* be called on fulfillment of the
/// read wait.
#[repr(C)]
struct ReadMessageRawOp {
/// This must be at the start of the struct so that `ReadMessageRawOp` can be cast to and from `fdf_channel_read`.
read_op: fdf_channel_read,
waker: Mutex<Option<Waker>>,
}
impl ReadMessageRawOp {
unsafe extern "C" fn handler(
_dispatcher: *mut fdf_dispatcher,
read_op: *mut fdf_channel_read,
_status: i32,
) {
// SAFETY: When setting up the read op, we incremented the refcount of the `Arc` to allow
// for this handler to reconstitute it.
let op: Arc<Self> = unsafe { Arc::from_raw(read_op.cast()) };
let waker = op
.waker
.lock()
.unwrap()
.take()
.expect("Channel read handler somehow called with no waker registered");
waker.wake()
}
}
struct ReadMessageRawFut<'a, T: ?Sized + 'static> {
op: Arc<ReadMessageRawOp>,
channel: &'a Channel<T>,
dispatcher: DispatcherRef<'a>,
}
impl<'a, T: ?Sized + 'static> Future for ReadMessageRawFut<'a, T> {
type Output = Result<Option<Message<[MaybeUninit<u8>]>>, Status>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut waker_lock = self.op.waker.lock().unwrap();
match self.channel.try_read_raw() {
Ok(res) => Poll::Ready(Ok(res)),
Err(Status::SHOULD_WAIT) => {
// if we haven't yet set a waker, that means we haven't started the wait operation
// yet.
if waker_lock.replace(cx.waker().clone()).is_none() {
// increment the reference count of the read op to account for the copy that will be given to
// `fdf_channel_wait_async`.
let op = Arc::into_raw(self.op.clone());
// SAFETY: the `ReadMessageRawOp` starts with an `fdf_channel_read` struct and
// has `repr(C)` layout, so is safe to be cast to the latter.
let res = Status::ok(unsafe {
fdf_channel_wait_async(self.dispatcher.0.as_ptr(), op.cast_mut().cast(), 0)
});
match res {
Ok(()) => {}
Err(e) => return Poll::Ready(Err(e)),
}
}
Poll::Pending
}
Err(e) => Poll::Ready(Err(e)),
}
}
}
impl<'a, T: ?Sized + 'static> Drop for ReadMessageRawFut<'a, T> {
fn drop(&mut self) {
let mut waker_lock = self.op.waker.lock().unwrap();
if waker_lock.is_none() {
// if there's no waker either the callback has already fired or we never waited on this
// future in the first place, so just leave it be.
return;
}
// SAFETY: since we hold a lifetimed-reference to the channel object here, the channel must
// be valid.
let res = Status::ok(unsafe { fdf_channel_cancel_wait(self.channel.0.get_raw().get()) });
match res {
Ok(_) => {}
Err(Status::NOT_FOUND) => {
// the callback is already being called or the wait was already cancelled, so just
// return and leave it.
return;
}
Err(e) => panic!("Unexpected error {e:?} cancelling driver channel read wait"),
}
// steal the waker so it doesn't get called, if there is one.
waker_lock.take();
// SAFETY: if the channel was waited on by a synchronized dispatcher, and the cancel was
// successful, the callback will not be called and we will have to free the `Arc` that the
// callback would have consumed.
if !self.dispatcher.is_unsynchronized() {
unsafe { Arc::decrement_strong_count(Arc::as_ptr(&self.op)) };
}
}
}
#[cfg(test)]
mod tests {
use std::sync::mpsc;
use crate::test::with_raw_dispatcher;
use crate::tests::DropSender;
use crate::{Dispatcher, MixedHandleType};
use super::*;
#[test]
fn send_and_receive_bytes_synchronously() {
let (first, second) = Channel::create().unwrap();
let arena = Arena::new().unwrap();
assert_eq!(first.try_read_bytes().unwrap_err(), Status::from_raw(ZX_ERR_SHOULD_WAIT));
first.write_with_data(arena.clone(), |arena| arena.insert_slice(&[1, 2, 3, 4])).unwrap();
assert_eq!(&*second.try_read_bytes().unwrap().unwrap().data().unwrap(), &[1, 2, 3, 4]);
assert_eq!(second.try_read_bytes().unwrap_err(), Status::from_raw(ZX_ERR_SHOULD_WAIT));
second.write_with_data(arena.clone(), |arena| arena.insert_slice(&[5, 6, 7, 8])).unwrap();
assert_eq!(&*first.try_read_bytes().unwrap().unwrap().data().unwrap(), &[5, 6, 7, 8]);
assert_eq!(first.try_read_bytes().unwrap_err(), Status::from_raw(ZX_ERR_SHOULD_WAIT));
assert_eq!(second.try_read_bytes().unwrap_err(), Status::from_raw(ZX_ERR_SHOULD_WAIT));
drop(second);
assert_eq!(
first.write_with_data(arena.clone(), |arena| arena.insert_slice(&[9, 10, 11, 12])),
Err(Status::from_raw(ZX_ERR_PEER_CLOSED))
);
}
#[test]
fn send_and_receive_bytes_asynchronously() {
with_raw_dispatcher("channel async", |dispatcher| {
let arena = Arena::new().unwrap();
let (fin_tx, fin_rx) = mpsc::channel();
let (first, second) = Channel::create().unwrap();
dispatcher
.spawn_task(async move {
fin_tx.send(first.read_bytes(dispatcher.as_ref()).await.unwrap()).unwrap();
})
.unwrap();
second.write_with_data(arena, |arena| arena.insert_slice(&[1, 2, 3, 4])).unwrap();
assert_eq!(fin_rx.recv().unwrap().unwrap().data().unwrap(), &[1, 2, 3, 4]);
});
}
#[test]
fn send_and_receive_objects_synchronously() {
let arena = Arena::new().unwrap();
let (first, second) = Channel::create().unwrap();
let (tx, rx) = mpsc::channel();
first
.write_with_data(arena.clone(), |arena| arena.insert(DropSender::new(1, tx.clone())))
.unwrap();
rx.try_recv().expect_err("should not drop the object when sent");
let message = second.try_read().unwrap().unwrap();
assert_eq!(message.data().unwrap().0, 1);
rx.try_recv().expect_err("should not drop the object when received");
drop(message);
rx.try_recv().expect("dropped when received");
}
#[test]
fn send_and_receive_handles_synchronously() {
println!("Create channels and write one end of one of the channel pairs to the other");
let (first, second) = Channel::<()>::create().unwrap();
let (inner_first, inner_second) = Channel::<String>::create().unwrap();
let message = Message::new_with(Arena::new().unwrap(), |arena| {
(None, Some(arena.insert_boxed_slice(Box::new([Some(inner_first.into())]))))
});
first.write(message).unwrap();
println!("Receive the channel back on the other end of the first channel pair.");
let mut arena = None;
let message =
second.try_read().unwrap().expect("Expected a message with contents to be received");
let (_, received_handles) = message.into_arena_boxes(&mut arena);
let mut first_handle_received =
ArenaBox::take_boxed_slice(received_handles.expect("expected handles in the message"));
let first_handle_received = first_handle_received
.first_mut()
.expect("expected one handle in the handle set")
.take()
.expect("expected the first handle to be non-null");
let first_handle_received = first_handle_received.resolve();
let MixedHandleType::Driver(driver_handle) = first_handle_received else {
panic!("Got a non-driver handle when we sent a driver handle");
};
let inner_first_received = unsafe { Channel::from_driver_handle(driver_handle) };
println!("Send and receive a string across the now-transmitted channel pair.");
inner_first_received
.write_with_data(Arena::new().unwrap(), |arena| arena.insert("boom".to_string()))
.unwrap();
assert_eq!(inner_second.try_read().unwrap().unwrap().data().unwrap(), &"boom".to_string());
}
async fn ping(dispatcher: &Dispatcher, chan: Channel<u8>) {
println!("starting ping!");
chan.write_with_data(Arena::new().unwrap(), |arena| arena.insert(0)).unwrap();
while let Ok(Some(msg)) = chan.read(dispatcher.as_ref()).await {
let next = *msg.data().unwrap();
println!("ping! {next}");
chan.write_with_data(msg.take_arena(), |arena| arena.insert(next + 1)).unwrap();
}
}
async fn pong(dispatcher: &Dispatcher, fin_tx: std::sync::mpsc::Sender<()>, chan: Channel<u8>) {
println!("starting pong!");
while let Some(msg) = chan.read(dispatcher.as_ref()).await.unwrap() {
let next = *msg.data().unwrap();
println!("pong! {next}");
if next > 10 {
println!("bye!");
break;
}
chan.write_with_data(msg.take_arena(), |arena| arena.insert(next + 1)).unwrap();
}
fin_tx.send(()).unwrap();
}
#[test]
fn async_ping_pong() {
with_raw_dispatcher("async ping pong", |dispatcher| {
let (fin_tx, fin_rx) = mpsc::channel();
let (ping_chan, pong_chan) = Channel::create().unwrap();
dispatcher.spawn_task(ping(&dispatcher, ping_chan)).unwrap();
dispatcher.spawn_task(pong(&dispatcher, fin_tx, pong_chan)).unwrap();
fin_rx.recv().expect("to receive final value");
});
}
#[test]
fn async_ping_pong_on_fuchsia_async() {
with_raw_dispatcher("async ping pong", |dispatcher| {
let (fin_tx, fin_rx) = mpsc::channel();
let (ping_chan, pong_chan) = Channel::create().unwrap();
dispatcher
.post_task_sync(|_status| {
let rust_async_dispatcher = crate::DispatcherBuilder::new()
.name("fuchsia-async")
.allow_thread_blocking()
.create()
.expect("failure creating blocking dispatcher for rust async");
dispatcher.spawn_task(pong(&dispatcher, fin_tx, pong_chan)).unwrap();
rust_async_dispatcher
.post_task_sync(|_| {
let mut executor = fuchsia_async::LocalExecutor::new();
executor.run_singlethreaded(ping(&dispatcher, ping_chan));
})
.unwrap();
})
.unwrap();
fin_rx.recv().expect("to receive final value");
});
}
#[test]
fn early_cancel_future() {
with_raw_dispatcher("early cancellation", |dispatcher| {
let (fin_tx, fin_rx) = mpsc::channel();
let (a, b) = Channel::create().unwrap();
dispatcher
.spawn_task(async move {
// create, poll, and then immediately drop a read future for channel `a`
// so that it properly sets up the wait.
let fut = a.read(dispatcher.as_ref());
futures::pin_mut!(fut);
let Poll::Pending = futures::poll!(fut.as_mut()) else {
panic!("expected pending state after polling channel read once");
};
drop(fut);
b.write_with_data(Arena::new().unwrap(), |arena| arena.insert(1)).unwrap();
assert_eq!(
a.read(dispatcher.as_ref()).await.unwrap().unwrap().data(),
Some(&1)
);
fin_tx.send(()).unwrap();
})
.unwrap();
fin_rx.recv().unwrap();
})
}
}