pub struct SignalProcessingSynchronousProxy { /* private fields */ }

Implementations§

source§

impl SignalProcessingSynchronousProxy

source

pub fn new(channel: Channel) -> Self

source

pub fn into_channel(self) -> Channel

source

pub fn wait_for_event( &self, deadline: Time ) -> Result<SignalProcessingEvent, Error>

Waits until an event arrives and returns it. It is safe for other threads to make concurrent requests while waiting for an event.

source

pub fn get_elements( &self, ___deadline: Time ) -> Result<ReaderGetElementsResult, Error>

Returns a vector of supported processing elements. Must return one or more processing elements, or ZX_ERR_NOT_SUPPORTED.

source

pub fn watch_element_state( &self, processing_element_id: u64, ___deadline: Time ) -> Result<ElementState, Error>

Get the processing element state via a hanging get. For a given processing_element_id, the driver will reply to the first WatchElementState sent by the client. The driver will not respond to subsequent client WatchElementState calls for a given processing_element_id until any field of the Element table changes from what was most recently reported for that processing_element_id. The driver will close the protocol channel with an error of ZX_ERR_BAD_STATE, if this method is called again while there is already a pending WatchElementState for this client and processing_element_id.

source

pub fn get_topologies( &self, ___deadline: Time ) -> Result<ReaderGetTopologiesResult, Error>

Returns a vector of supported topologies. Must return one or more topologies, or ZX_ERR_NOT_SUPPORTED. If more than one topology is returned, then the client may choose any of the topologies from the list with SetTopology. If only one topology is returned, then the topology definition is informational only since the one and only topology used can’t be changed with SetTopology. If GetElements returns one or more elements, GetTopologies must return one or more topologies.

source

pub fn watch_topology(&self, ___deadline: Time) -> Result<u64, Error>

Get the current topology via a hanging get. The driver will immediately reply to the first WatchTopology sent by each client. The driver will not respond to subsequent WatchTopology calls from that client until the signal-processing topology changes, which occurs as a result of a SetTopology call. The driver will close the protocol channel with an error of ZX_ERR_BAD_STATE, if this method is called again while there is already a pending WatchTopology for this client.

source

pub fn set_element_state( &self, processing_element_id: u64, state: &ElementState, ___deadline: Time ) -> Result<SignalProcessingSetElementStateResult, Error>

Controls a processing element using a unique id returned by GetElements. Returns ZX_ERR_INVALID_ARGS if the processing_element_id does not match an id returned by GetElements or the type of TypeSpecificElementState does not match the ElementType of the processing element returned by GetElements for this id. The driver may return ZX_ERR_INVALID_ARGS if the state values are invalid, i.e. any of the values violates rules specified in this protocol, e.g. trying to change an EQUALIZER processing element’s EqualizerBandState frequency when this processing element did not advertise CAN_CONTROL_FREQUENCY in its supported_controls.

SetElementState may be called before or after non-SignalProcessing protocol calls. If called after non-SignalProcessing protocol calls then SetElementState may or may not require renegotiation of the driver state as reached with calls of the protocol composing SignalProcessing, e.g. Dai. For instance, SetElementState changing an AGL processing element’s parameters may not require renegotiation of the Dai state because changing a gain parameter usually does not change the set of supported audio formats. By contrast, if SetElementState changes the parameters of a CONNECTION_POINT element, the change may require renegotiation because it may invalidate the set of supported formats returned in a previous GetDaiFormats Dai protocol call.

It is the driver’s job to determine when renegotiation is required. If renegotiation is required, then SetElementState must return ZX_ERR_BAD_STATE and the client must close the protocol channel such that the protocol negotiations are started over. The client then must make the SetElementState call that returned ZX_ERR_BAD_STATE before any non-SignalProcessing protocol calls.

source

pub fn set_topology( &self, topology_id: u64, ___deadline: Time ) -> Result<SignalProcessingSetTopologyResult, Error>

Sets the topology to be used using an id to the vector returned by GetTopologies. The current topology is communicated by WatchTopology responses. To change which topology is active, a client uses SetTopology. If the specified topology_id is not within thetopologies returned by GetTopologies, this call will return ZX_ERR_INVALID_ARGS. If GetTopologies returns only one Topology, SetTopology is optional and has no effect.

SetTopology may be called before or after non-SignalProcessing protocol calls. If called after non-SignalProcessing protocol calls, then SetTopology may return ZX_ERR_BAD_STATE to indicate that the operation can not proceed without renegotiation of the driver state. See SetElementState for further discussion.

Trait Implementations§

source§

impl Debug for SignalProcessingSynchronousProxy

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl SynchronousProxy for SignalProcessingSynchronousProxy

§

type Proxy = SignalProcessingProxy

The async proxy for the same protocol.
§

type Protocol = SignalProcessingMarker

The protocol which this Proxy controls.
source§

fn from_channel(inner: Channel) -> Self

Create a proxy over the given channel.
source§

fn into_channel(self) -> Channel

Convert the proxy back into a channel.
source§

fn as_channel(&self) -> &Channel

Get a reference to the proxy’s underlying channel. Read more

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Encode<Ambiguous1> for T

§

unsafe fn encode( self, _encoder: &mut Encoder<'_>, _offset: usize, _depth: Depth ) -> Result<(), Error>

Encodes the object into the encoder’s buffers. Any handles stored in the object are swapped for Handle::INVALID. Read more
§

impl<T> Encode<Ambiguous2> for T

§

unsafe fn encode( self, _encoder: &mut Encoder<'_>, _offset: usize, _depth: Depth ) -> Result<(), Error>

Encodes the object into the encoder’s buffers. Any handles stored in the object are swapped for Handle::INVALID. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more