lock_order

Module relation

Source
Expand description

Traits used to describe lock-ordering relationships.

This crate defines the traits used to describe lock-ordering relationships, LockBefore and LockAfter. They are reciprocals, like From and Into in the standard library, and like From and Into, a blanket impl is provided for LockBefore for implementations of LockAfter.

It’s recommended that, instead of implementing LockAfter<B> for A on your own lock level types A and B, you use the [impl_lock_after] macro instead. Why? Because in addition to emitting an implementation of LockAfter, it also provides a blanket implementation equivalent to this:

impl <X> LockAfter<X> for B where A: LockAfter<X> {}

The blanket implementations are useful for inferring trait implementations but have a more important purpose: they make it impossible to introduce cycles in our lock ordering graph, and that’s the key property we want to uphold.

To see how this happens, let’s look at the trait implementations. Suppose we have a lock ordering graph that looks like this:

A -> B -> C

Assuming we are using impl_lock_after, that gives us the following trait implementations:

// Graph edges
impl LockAfter<A> for B {}
impl LockAfter<B> for C {}
// Blanket impls that get us transitivity
impl<X> LockAfter<X> for B where A: LockAfter<X> {} // 1
impl<X> LockAfter<X> for C where B: LockAfter<X> {} // 2

Now suppose we added an edge C -> A (introducing a cycle). That would give us these two impls:

// New edge
impl LockAfter<C> for A {}
// New blanket impl
impl<X> LockAfter<X> for A where C: LockAfter<X> {}

The compiler will follow the blanket impls to produce implicit LockAfter implementations like this:

  1. Our added edge satisfies the where clause for blanket impl 1 with X=C, so the compiler infers an implicit impl LockAfter<C> for B {}.
  2. That satisfies the conditions for blanket impl 2 (X=C), so now we also have impl LockAfter<C> for C {}.
  3. This satisfies the condition for our new blanket impl with X=C; now the compiler adds an implicit impl LockAfter<C> for A {}.

Depicted visually, the compiler combines specific and blanket impls like this:

┌─────────────────────────┐┌──────────────────────────────────────────────────┐
│ impl LockAfter<C> for A ││ impl<X> LockAfter<X> for B where A: LockAfter<X> │
└┬────────────────────────┘└┬─────────────────────────────────────────────────┘
┌▽──────────────────────────▽┐┌──────────────────────────────────────────────────┐
│ impl LockAfter<C> for B    ││ impl<X> LockAfter<X> for C where B: LockAfter<X> │
└┬───────────────────────────┘└┬─────────────────────────────────────────────────┘
┌▽─────────────────────────────▽┐┌──────────────────────────────────────────────────┐                                                  │
│ impl LockAfter<C> for C       ││ impl<X> LockAfter<X> for A where C: LockAfter<X> │                                                                                            │
└┬──────────────────────────────┘└┬─────────────────────────────────────────────────┘
┌▽────────────────────────────────▽┐
│ impl LockAfter<C> for A  (again) │
└──────────────────────────────────┘

The final implicit trait implementation has the exact same trait (LockAfter<C>) and type (A) as the explicit implementation we added with our graph edge, so the compiler detects the duplication and rejects our code. This works not just with the graph above, but with any graph that includes a cycle.

Traits§

  • Marker trait that indicates that Self can be locked after A.
  • Marker trait that indicates that Self is an ancestor of X.