pub struct SecureHeapProperties {
    pub heap: Option<HeapType>,
    pub dynamic_protection_ranges: Option<bool>,
    pub protected_range_granularity: Option<u32>,
    pub max_protected_range_count: Option<u64>,
    pub is_mod_protected_range_available: Option<bool>,
    /* private fields */
}

Fields§

§heap: Option<HeapType>

The HeapType is repeated here for convenience.

§dynamic_protection_ranges: Option<bool>

If true, more than one call to SetPhysicalSecureHeap() for the same heap is allowed. If false, only one SetPhyscialSecureHeap() call is allowed, and no calls to DeleteSecureHeapPhysicalRange() or ModifySecureHeapPhysicalRange() are allowed. Even when this is false, the SecureMem server (driver) is still responsible for de-protecting just before warm reboot if protected ranges would not otherwise be cleaned up during a warm reboot.

§protected_range_granularity: Option<u32>

The granularity of protection ranges. If the granularity of start is different than granularity of end or length, then this is the max granularity value among those values.

This must be a power of 2. The client must not request ranges that specify smaller granularity.

This must be at least zx_system_page_size() even if the HW can do smaller granularity.

§max_protected_range_count: Option<u64>

The SecureMem server should not count reserved ranges that the SecureMem server uses internally to get from range set A to range set B, if the SecureMem server needs to do any emulation of that sort. Normally such emulation by the SecureMem server is unnecessary. If any ranges are reserved by the SecureMem server, those reserved ranges are not available for use by the SecureMem client.

If the number of ranges is limited only by available memory, it’s ok for the SecureMem server to report 0xFFFFFFFFFFFFFFFF for this value. The field must still be set. As usual, the SecureMem server should ensure that SetPhysicalSecureHeapRanges() succeeds or fails atomically (either fully updates or rolls back before completing).

§is_mod_protected_range_available: Option<bool>

Iff true, ModifySecureHeapPhysicalRange() is implemented. Calling ModifySecureHeapPhysicalRange() when is_mod_protected_range_available is false is prohibited. Don’t attempt to detect availability of ModifySecureHeapPhysicalRange() by calling it to see if it fails; it may ZX_PANIC().

Trait Implementations§

source§

impl Clone for SecureHeapProperties

source§

fn clone(&self) -> SecureHeapProperties

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for SecureHeapProperties

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Decode<SecureHeapProperties> for SecureHeapProperties

source§

fn new_empty() -> Self

Creates a valid instance of Self. The specific value does not matter, since it will be overwritten by decode.
source§

unsafe fn decode( &mut self, decoder: &mut Decoder<'_>, offset: usize, depth: Depth ) -> Result<()>

Decodes an object of type T from the decoder’s buffers into self. Read more
source§

impl Default for SecureHeapProperties

source§

fn default() -> SecureHeapProperties

Returns the “default value” for a type. Read more
source§

impl Encode<SecureHeapProperties> for &SecureHeapProperties

source§

unsafe fn encode( self, encoder: &mut Encoder<'_>, offset: usize, depth: Depth ) -> Result<()>

Encodes the object into the encoder’s buffers. Any handles stored in the object are swapped for Handle::INVALID. Read more
source§

impl PartialEq for SecureHeapProperties

source§

fn eq(&self, other: &SecureHeapProperties) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl TypeMarker for SecureHeapProperties

§

type Owned = SecureHeapProperties

The owned Rust type which this FIDL type decodes into.
source§

fn inline_align(_context: Context) -> usize

Returns the minimum required alignment of the inline portion of the encoded object. It must be a (nonzero) power of two.
source§

fn inline_size(_context: Context) -> usize

Returns the size of the inline portion of the encoded object, including padding for alignment. Must be a multiple of inline_align.
§

fn encode_is_copy() -> bool

Returns true if the memory layout of Self::Owned matches the FIDL wire format and encoding requires no validation. When true, we can optimize encoding arrays and vectors of Self::Owned to a single memcpy. Read more
§

fn decode_is_copy() -> bool

Returns true if the memory layout of Self::Owned matches the FIDL wire format and decoding requires no validation. When true, we can optimize decoding arrays and vectors of Self::Owned to a single memcpy.
source§

impl ValueTypeMarker for SecureHeapProperties

§

type Borrowed<'a> = &'a SecureHeapProperties

The Rust type to use for encoding. This is a particular Encode<Self> type cheaply obtainable from &Self::Owned. There are three cases: Read more
source§

fn borrow<'a>(value: &'a <Self as TypeMarker>::Owned) -> Self::Borrowed<'a>

Cheaply converts from &Self::Owned to Self::Borrowed.
source§

impl Persistable for SecureHeapProperties

source§

impl StructuralPartialEq for SecureHeapProperties

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> Body for T
where T: Persistable,

§

type MarkerAtTopLevel = T

The marker type to use when the body is at the top-level.
§

type MarkerInResultUnion = T

The marker type to use when the body is nested in a result union.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Encode<Ambiguous1> for T

§

unsafe fn encode( self, _encoder: &mut Encoder<'_>, _offset: usize, _depth: Depth ) -> Result<(), Error>

Encodes the object into the encoder’s buffers. Any handles stored in the object are swapped for Handle::INVALID. Read more
§

impl<T> Encode<Ambiguous2> for T

§

unsafe fn encode( self, _encoder: &mut Encoder<'_>, _offset: usize, _depth: Depth ) -> Result<(), Error>

Encodes the object into the encoder’s buffers. Any handles stored in the object are swapped for Handle::INVALID. Read more
§

impl<E> ErrorType for E
where E: ValueTypeMarker<Owned = E> + Decode<E>,

§

type Marker = E

The marker type.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more