pub struct f16(/* private fields */);
Expand description
A 16-bit floating point type implementing the IEEE 754-2008 standard binary16
a.k.a half
format.
This 16-bit floating point type is intended for efficient storage where the full range and
precision of a larger floating point value is not required. Because f16
is primarily for
efficient storage, floating point operations such as addition, multiplication, etc. are not
implemented. Operations should be performed with f32
or higher-precision types and converted
to/from f16
as necessary.
Implementations§
Source§impl f16
impl f16
Sourcepub const EPSILON: f16 = _
pub const EPSILON: f16 = _
f16
machine epsilon value.
This is the difference between 1.0 and the next largest representable number.
Sourcepub const MANTISSA_DIGITS: u32 = 11u32
pub const MANTISSA_DIGITS: u32 = 11u32
Number of f16
significant digits in base 2.
Sourcepub const MAX_10_EXP: i32 = 4i32
pub const MAX_10_EXP: i32 = 4i32
Maximum possible f16
power of 10 exponent.
Sourcepub const MIN_10_EXP: i32 = -4i32
pub const MIN_10_EXP: i32 = -4i32
Minimum possible normal f16
power of 10 exponent.
Sourcepub const MIN_EXP: i32 = -13i32
pub const MIN_EXP: i32 = -13i32
One greater than the minimum possible normal f16
power of 2 exponent.
Sourcepub const MIN_POSITIVE: f16 = _
pub const MIN_POSITIVE: f16 = _
Smallest positive normal f16
value.
Sourcepub const NEG_INFINITY: f16 = _
pub const NEG_INFINITY: f16 = _
f16
negative infinity (-∞).
Sourcepub const MIN_POSITIVE_SUBNORMAL: f16 = _
pub const MIN_POSITIVE_SUBNORMAL: f16 = _
Minimum positive subnormal f16
value.
Sourcepub const MAX_SUBNORMAL: f16 = _
pub const MAX_SUBNORMAL: f16 = _
Maximum subnormal f16
value.
Sourcepub const FRAC_1_SQRT_2: f16 = _
pub const FRAC_1_SQRT_2: f16 = _
f16
1/√2
Sourcepub const FRAC_2_SQRT_PI: f16 = _
pub const FRAC_2_SQRT_PI: f16 = _
f16
2/√π
Sourcepub const fn from_bits(bits: u16) -> f16
pub const fn from_bits(bits: u16) -> f16
Constructs a 16-bit floating point value from the raw bits.
Sourcepub fn from_f32(value: f32) -> f16
pub fn from_f32(value: f32) -> f16
Constructs a 16-bit floating point value from a 32-bit floating point value.
If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.
Sourcepub fn from_f64(value: f64) -> f16
pub fn from_f64(value: f64) -> f16
Constructs a 16-bit floating point value from a 64-bit floating point value.
If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.
Sourcepub fn to_le_bytes(self) -> [u8; 2]
pub fn to_le_bytes(self) -> [u8; 2]
Return the memory representation of the underlying bit representation as a byte array in little-endian byte order.
§Examples
let bytes = f16::from_f32(12.5).to_le_bytes();
assert_eq!(bytes, [0x40, 0x4A]);
Sourcepub fn to_be_bytes(self) -> [u8; 2]
pub fn to_be_bytes(self) -> [u8; 2]
Return the memory representation of the underlying bit representation as a byte array in big-endian (network) byte order.
§Examples
let bytes = f16::from_f32(12.5).to_be_bytes();
assert_eq!(bytes, [0x4A, 0x40]);
Sourcepub fn to_ne_bytes(self) -> [u8; 2]
pub fn to_ne_bytes(self) -> [u8; 2]
Return the memory representation of the underlying bit representation as a byte array in native byte order.
As the target platform’s native endianness is used, portable code should use to_be_bytes
or to_le_bytes
, as appropriate, instead.
§Examples
let bytes = f16::from_f32(12.5).to_ne_bytes();
assert_eq!(bytes, if cfg!(target_endian = "big") {
[0x4A, 0x40]
} else {
[0x40, 0x4A]
});
Sourcepub fn from_le_bytes(bytes: [u8; 2]) -> f16
pub fn from_le_bytes(bytes: [u8; 2]) -> f16
Create a floating point value from its representation as a byte array in little endian.
§Examples
let value = f16::from_le_bytes([0x40, 0x4A]);
assert_eq!(value, f16::from_f32(12.5));
Sourcepub fn from_be_bytes(bytes: [u8; 2]) -> f16
pub fn from_be_bytes(bytes: [u8; 2]) -> f16
Create a floating point value from its representation as a byte array in big endian.
§Examples
let value = f16::from_be_bytes([0x4A, 0x40]);
assert_eq!(value, f16::from_f32(12.5));
Sourcepub fn from_ne_bytes(bytes: [u8; 2]) -> f16
pub fn from_ne_bytes(bytes: [u8; 2]) -> f16
Create a floating point value from its representation as a byte array in native endian.
As the target platform’s native endianness is used, portable code likely wants to use
from_be_bytes
or from_le_bytes
, as appropriate instead.
§Examples
let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
[0x4A, 0x40]
} else {
[0x40, 0x4A]
});
assert_eq!(value, f16::from_f32(12.5));
Sourcepub fn as_bits(self) -> u16
👎Deprecated since 1.2.0: renamed to to_bits
pub fn as_bits(self) -> u16
to_bits
Converts a f16
into the underlying bit representation.
Sourcepub fn to_f32(self) -> f32
pub fn to_f32(self) -> f32
Converts a f16
value into a f32
value.
This conversion is lossless as all 16-bit floating point values can be represented exactly in 32-bit floating point.
Sourcepub fn to_f64(self) -> f64
pub fn to_f64(self) -> f64
Converts a f16
value into a f64
value.
This conversion is lossless as all 16-bit floating point values can be represented exactly in 64-bit floating point.
Sourcepub const fn is_nan(self) -> bool
pub const fn is_nan(self) -> bool
Returns true
if this value is NaN
and false
otherwise.
§Examples
let nan = f16::NAN;
let f = f16::from_f32(7.0_f32);
assert!(nan.is_nan());
assert!(!f.is_nan());
Sourcepub const fn is_infinite(self) -> bool
pub const fn is_infinite(self) -> bool
Returns true
if this value is ±∞ and false
otherwise.
§Examples
let f = f16::from_f32(7.0f32);
let inf = f16::INFINITY;
let neg_inf = f16::NEG_INFINITY;
let nan = f16::NAN;
assert!(!f.is_infinite());
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
Sourcepub const fn is_finite(self) -> bool
pub const fn is_finite(self) -> bool
Returns true
if this number is neither infinite nor NaN
.
§Examples
let f = f16::from_f32(7.0f32);
let inf = f16::INFINITY;
let neg_inf = f16::NEG_INFINITY;
let nan = f16::NAN;
assert!(f.is_finite());
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
Sourcepub fn is_normal(self) -> bool
pub fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite, subnormal, or NaN
.
§Examples
let min = f16::MIN_POSITIVE;
let max = f16::MAX;
let lower_than_min = f16::from_f32(1.0e-10_f32);
let zero = f16::from_f32(0.0_f32);
assert!(min.is_normal());
assert!(max.is_normal());
assert!(!zero.is_normal());
assert!(!f16::NAN.is_normal());
assert!(!f16::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());
Sourcepub fn classify(self) -> FpCategory
pub fn classify(self) -> FpCategory
Returns the floating point category of the number.
If only one property is going to be tested, it is generally faster to use the specific predicate instead.
§Examples
use std::num::FpCategory;
let num = f16::from_f32(12.4_f32);
let inf = f16::INFINITY;
assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);
Sourcepub fn signum(self) -> f16
pub fn signum(self) -> f16
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
§Examples
let f = f16::from_f32(3.5_f32);
assert_eq!(f.signum(), f16::from_f32(1.0));
assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
assert!(f16::NAN.signum().is_nan());
Sourcepub const fn is_sign_positive(self) -> bool
pub const fn is_sign_positive(self) -> bool
Returns true
if and only if self
has a positive sign, including +0.0
, NaNs
with a
positive sign bit and +∞.
§Examples
let nan = f16::NAN;
let f = f16::from_f32(7.0_f32);
let g = f16::from_f32(-7.0_f32);
assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
// `NaN` can be either positive or negative
assert!(nan.is_sign_positive() != nan.is_sign_negative());
Sourcepub const fn is_sign_negative(self) -> bool
pub const fn is_sign_negative(self) -> bool
Returns true
if and only if self
has a negative sign, including -0.0
, NaNs
with a
negative sign bit and −∞.
§Examples
let nan = f16::NAN;
let f = f16::from_f32(7.0f32);
let g = f16::from_f32(-7.0f32);
assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
// `NaN` can be either positive or negative
assert!(nan.is_sign_positive() != nan.is_sign_negative());
Trait Implementations§
Source§impl PartialOrd for f16
impl PartialOrd for f16
impl Copy for f16
Auto Trait Implementations§
impl Freeze for f16
impl RefUnwindSafe for f16
impl Send for f16
impl Sync for f16
impl Unpin for f16
impl UnwindSafe for f16
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)