Struct half::f16

source ·
pub struct f16(/* private fields */);
Expand description

A 16-bit floating point type implementing the IEEE 754-2008 standard binary16 a.k.a half format.

This 16-bit floating point type is intended for efficient storage where the full range and precision of a larger floating point value is not required. Because f16 is primarily for efficient storage, floating point operations such as addition, multiplication, etc. are not implemented. Operations should be performed with f32 or higher-precision types and converted to/from f16 as necessary.

Implementations§

source§

impl f16

source

pub const fn from_bits(bits: u16) -> f16

Constructs a 16-bit floating point value from the raw bits.

source

pub fn from_f32(value: f32) -> f16

Constructs a 16-bit floating point value from a 32-bit floating point value.

If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.

source

pub fn from_f64(value: f64) -> f16

Constructs a 16-bit floating point value from a 64-bit floating point value.

If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.

source

pub const fn to_bits(self) -> u16

Converts a f16 into the underlying bit representation.

source

pub fn to_le_bytes(self) -> [u8; 2]

Return the memory representation of the underlying bit representation as a byte array in little-endian byte order.

§Examples
let bytes = f16::from_f32(12.5).to_le_bytes();
assert_eq!(bytes, [0x40, 0x4A]);
source

pub fn to_be_bytes(self) -> [u8; 2]

Return the memory representation of the underlying bit representation as a byte array in big-endian (network) byte order.

§Examples
let bytes = f16::from_f32(12.5).to_be_bytes();
assert_eq!(bytes, [0x4A, 0x40]);
source

pub fn to_ne_bytes(self) -> [u8; 2]

Return the memory representation of the underlying bit representation as a byte array in native byte order.

As the target platform’s native endianness is used, portable code should use to_be_bytes or to_le_bytes, as appropriate, instead.

§Examples
let bytes = f16::from_f32(12.5).to_ne_bytes();
assert_eq!(bytes, if cfg!(target_endian = "big") {
    [0x4A, 0x40]
} else {
    [0x40, 0x4A]
});
source

pub fn from_le_bytes(bytes: [u8; 2]) -> f16

Create a floating point value from its representation as a byte array in little endian.

§Examples
let value = f16::from_le_bytes([0x40, 0x4A]);
assert_eq!(value, f16::from_f32(12.5));
source

pub fn from_be_bytes(bytes: [u8; 2]) -> f16

Create a floating point value from its representation as a byte array in big endian.

§Examples
let value = f16::from_be_bytes([0x4A, 0x40]);
assert_eq!(value, f16::from_f32(12.5));
source

pub fn from_ne_bytes(bytes: [u8; 2]) -> f16

Create a floating point value from its representation as a byte array in native endian.

As the target platform’s native endianness is used, portable code likely wants to use from_be_bytes or from_le_bytes, as appropriate instead.

§Examples
let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
    [0x4A, 0x40]
} else {
    [0x40, 0x4A]
});
assert_eq!(value, f16::from_f32(12.5));
source

pub fn as_bits(self) -> u16

👎Deprecated since 1.2.0: renamed to to_bits

Converts a f16 into the underlying bit representation.

source

pub fn to_f32(self) -> f32

Converts a f16 value into a f32 value.

This conversion is lossless as all 16-bit floating point values can be represented exactly in 32-bit floating point.

source

pub fn to_f64(self) -> f64

Converts a f16 value into a f64 value.

This conversion is lossless as all 16-bit floating point values can be represented exactly in 64-bit floating point.

source

pub const fn is_nan(self) -> bool

Returns true if this value is NaN and false otherwise.

§Examples

let nan = f16::NAN;
let f = f16::from_f32(7.0_f32);

assert!(nan.is_nan());
assert!(!f.is_nan());
source

pub const fn is_infinite(self) -> bool

Returns true if this value is ±∞ and false otherwise.

§Examples

let f = f16::from_f32(7.0f32);
let inf = f16::INFINITY;
let neg_inf = f16::NEG_INFINITY;
let nan = f16::NAN;

assert!(!f.is_infinite());
assert!(!nan.is_infinite());

assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
source

pub const fn is_finite(self) -> bool

Returns true if this number is neither infinite nor NaN.

§Examples

let f = f16::from_f32(7.0f32);
let inf = f16::INFINITY;
let neg_inf = f16::NEG_INFINITY;
let nan = f16::NAN;

assert!(f.is_finite());

assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
source

pub fn is_normal(self) -> bool

Returns true if the number is neither zero, infinite, subnormal, or NaN.

§Examples

let min = f16::MIN_POSITIVE;
let max = f16::MAX;
let lower_than_min = f16::from_f32(1.0e-10_f32);
let zero = f16::from_f32(0.0_f32);

assert!(min.is_normal());
assert!(max.is_normal());

assert!(!zero.is_normal());
assert!(!f16::NAN.is_normal());
assert!(!f16::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());
source

pub fn classify(self) -> FpCategory

Returns the floating point category of the number.

If only one property is going to be tested, it is generally faster to use the specific predicate instead.

§Examples
use std::num::FpCategory;

let num = f16::from_f32(12.4_f32);
let inf = f16::INFINITY;

assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);
source

pub fn signum(self) -> f16

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or INFINITY
  • -1.0 if the number is negative, -0.0 or NEG_INFINITY
  • NAN if the number is NAN
§Examples

let f = f16::from_f32(3.5_f32);

assert_eq!(f.signum(), f16::from_f32(1.0));
assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));

assert!(f16::NAN.signum().is_nan());
source

pub const fn is_sign_positive(self) -> bool

Returns true if and only if self has a positive sign, including +0.0, NaNs with a positive sign bit and +∞.

§Examples

let nan = f16::NAN;
let f = f16::from_f32(7.0_f32);
let g = f16::from_f32(-7.0_f32);

assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
// `NaN` can be either positive or negative
assert!(nan.is_sign_positive() != nan.is_sign_negative());
source

pub const fn is_sign_negative(self) -> bool

Returns true if and only if self has a negative sign, including -0.0, NaNs with a negative sign bit and −∞.

§Examples

let nan = f16::NAN;
let f = f16::from_f32(7.0f32);
let g = f16::from_f32(-7.0f32);

assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
// `NaN` can be either positive or negative
assert!(nan.is_sign_positive() != nan.is_sign_negative());
source

pub const DIGITS: u32 = 3u32

Approximate number of f16 significant digits in base 10.

source

pub const EPSILON: f16 = _

f16 machine epsilon value.

This is the difference between 1.0 and the next largest representable number.

source

pub const INFINITY: f16 = _

f16 positive Infinity (+∞).

source

pub const MANTISSA_DIGITS: u32 = 11u32

Number of f16 significant digits in base 2.

source

pub const MAX: f16 = _

Largest finite f16 value.

source

pub const MAX_10_EXP: i32 = 4i32

Maximum possible f16 power of 10 exponent.

source

pub const MAX_EXP: i32 = 16i32

Maximum possible f16 power of 2 exponent.

source

pub const MIN: f16 = _

Smallest finite f16 value.

source

pub const MIN_10_EXP: i32 = -4i32

Minimum possible normal f16 power of 10 exponent.

source

pub const MIN_EXP: i32 = -13i32

One greater than the minimum possible normal f16 power of 2 exponent.

source

pub const MIN_POSITIVE: f16 = _

Smallest positive normal f16 value.

source

pub const NAN: f16 = _

f16 Not a Number (NaN).

source

pub const NEG_INFINITY: f16 = _

f16 negative infinity (-∞).

source

pub const RADIX: u32 = 2u32

The radix or base of the internal representation of f16.

source

pub const MIN_POSITIVE_SUBNORMAL: f16 = _

Minimum positive subnormal f16 value.

source

pub const MAX_SUBNORMAL: f16 = _

Maximum subnormal f16 value.

source

pub const ONE: f16 = _

f16 1

source

pub const ZERO: f16 = _

f16 0

source

pub const NEG_ZERO: f16 = _

f16 -0

source

pub const E: f16 = _

f16 Euler’s number (ℯ).

source

pub const PI: f16 = _

f16 Archimedes’ constant (π).

source

pub const FRAC_1_PI: f16 = _

f16 1/π

source

pub const FRAC_1_SQRT_2: f16 = _

f16 1/√2

source

pub const FRAC_2_PI: f16 = _

f16 2/π

source

pub const FRAC_2_SQRT_PI: f16 = _

f16 2/√π

source

pub const FRAC_PI_2: f16 = _

f16 π/2

source

pub const FRAC_PI_3: f16 = _

f16 π/3

source

pub const FRAC_PI_4: f16 = _

f16 π/4

source

pub const FRAC_PI_6: f16 = _

f16 π/6

source

pub const FRAC_PI_8: f16 = _

f16 π/8

source

pub const LN_10: f16 = _

f16 𝗅𝗇 10

source

pub const LN_2: f16 = _

f16 𝗅𝗇 2

source

pub const LOG10_E: f16 = _

f16 𝗅𝗈𝗀₁₀ℯ

source

pub const LOG10_2: f16 = _

f16 𝗅𝗈𝗀₁₀2

source

pub const LOG2_E: f16 = _

f16 𝗅𝗈𝗀₂ℯ

source

pub const LOG2_10: f16 = _

f16 𝗅𝗈𝗀₂10

source

pub const SQRT_2: f16 = _

f16 √2

Trait Implementations§

source§

impl Clone for f16

source§

fn clone(&self) -> f16

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for f16

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Default for f16

source§

fn default() -> f16

Returns the “default value” for a type. Read more
source§

impl Display for f16

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl From<f16> for f32

source§

fn from(x: f16) -> f32

Converts to this type from the input type.
source§

impl From<f16> for f64

source§

fn from(x: f16) -> f64

Converts to this type from the input type.
source§

impl From<i8> for f16

source§

fn from(x: i8) -> f16

Converts to this type from the input type.
source§

impl From<u8> for f16

source§

fn from(x: u8) -> f16

Converts to this type from the input type.
source§

impl FromStr for f16

§

type Err = ParseFloatError

The associated error which can be returned from parsing.
source§

fn from_str(src: &str) -> Result<f16, ParseFloatError>

Parses a string s to return a value of this type. Read more
source§

impl LowerExp for f16

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter.
source§

impl PartialEq for f16

source§

fn eq(&self, other: &f16) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PartialOrd for f16

source§

fn partial_cmp(&self, other: &f16) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
source§

fn lt(&self, other: &f16) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
source§

fn le(&self, other: &f16) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
source§

fn gt(&self, other: &f16) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
source§

fn ge(&self, other: &f16) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl UpperExp for f16

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter.
source§

impl Copy for f16

Auto Trait Implementations§

§

impl Freeze for f16

§

impl RefUnwindSafe for f16

§

impl Send for f16

§

impl Sync for f16

§

impl Unpin for f16

§

impl UnwindSafe for f16

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.