pub struct Futex { /* private fields */ }Expand description
A safe wrapper around zx_futex_t, generally called as part of higher-level synchronization primitives.
Implementations§
Source§impl Futex
impl Futex
pub const fn new(value: i32) -> Self
Sourcepub fn wake_all(&self)
pub fn wake_all(&self)
Wakes the maximum number of waiters possible.
See https://fuchsia.dev/reference/syscalls/futex_wake.
Sourcepub fn wake_single_owner(&self)
pub fn wake_single_owner(&self)
See https://fuchsia.dev/reference/syscalls/futex_wake_single_owner.
Sourcepub fn wake_handle_close_thread_exit(
&self,
wake_count: u32,
new_value: i32,
to_close: Handle,
) -> !
pub fn wake_handle_close_thread_exit( &self, wake_count: u32, new_value: i32, to_close: Handle, ) -> !
See https://fuchsia.dev/reference/syscalls/futex_wake_handle_close_thread_exit.
Sourcepub fn requeue(
&self,
wake_count: u32,
current_value: i32,
requeue_to: &Self,
requeue_count: u32,
new_requeue_owner: Option<&Thread>,
) -> Result<(), Status>
pub fn requeue( &self, wake_count: u32, current_value: i32, requeue_to: &Self, requeue_count: u32, new_requeue_owner: Option<&Thread>, ) -> Result<(), Status>
See https://fuchsia.dev/reference/syscalls/futex_requeue.
Sourcepub fn requeue_single_owner(
&self,
current_value: i32,
requeue_to: &Self,
requeue_count: u32,
new_requeue_owner: Option<&Thread>,
) -> Result<(), Status>
pub fn requeue_single_owner( &self, current_value: i32, requeue_to: &Self, requeue_count: u32, new_requeue_owner: Option<&Thread>, ) -> Result<(), Status>
See https://fuchsia.dev/reference/syscalls/futex_requeue_single_owner.
Methods from Deref<Target = zx_futex_t>§
1.34.0 · Sourcepub fn load(&self, order: Ordering) -> i32
pub fn load(&self, order: Ordering) -> i32
Loads a value from the atomic integer.
load takes an Ordering argument which describes the memory ordering of this operation.
Possible values are SeqCst, Acquire and Relaxed.
§Panics
Panics if order is Release or AcqRel.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let some_var = AtomicI32::new(5);
assert_eq!(some_var.load(Ordering::Relaxed), 5);1.34.0 · Sourcepub fn store(&self, val: i32, order: Ordering)
pub fn store(&self, val: i32, order: Ordering)
Stores a value into the atomic integer.
store takes an Ordering argument which describes the memory ordering of this operation.
Possible values are SeqCst, Release and Relaxed.
§Panics
Panics if order is Acquire or AcqRel.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let some_var = AtomicI32::new(5);
some_var.store(10, Ordering::Relaxed);
assert_eq!(some_var.load(Ordering::Relaxed), 10);1.34.0 · Sourcepub fn swap(&self, val: i32, order: Ordering) -> i32
pub fn swap(&self, val: i32, order: Ordering) -> i32
Stores a value into the atomic integer, returning the previous value.
swap takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let some_var = AtomicI32::new(5);
assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);1.34.0 · Sourcepub fn compare_and_swap(&self, current: i32, new: i32, order: Ordering) -> i32
👎Deprecated since 1.50.0: Use compare_exchange or compare_exchange_weak instead
pub fn compare_and_swap(&self, current: i32, new: i32, order: Ordering) -> i32
compare_exchange or compare_exchange_weak insteadStores a value into the atomic integer if the current value is the same as
the current value.
The return value is always the previous value. If it is equal to current, then the
value was updated.
compare_and_swap also takes an Ordering argument which describes the memory
ordering of this operation. Notice that even when using AcqRel, the operation
might fail and hence just perform an Acquire load, but not have Release semantics.
Using Acquire makes the store part of this operation Relaxed if it
happens, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Migrating to compare_exchange and compare_exchange_weak
compare_and_swap is equivalent to compare_exchange with the following mapping for
memory orderings:
| Original | Success | Failure |
|---|---|---|
| Relaxed | Relaxed | Relaxed |
| Acquire | Acquire | Acquire |
| Release | Release | Relaxed |
| AcqRel | AcqRel | Acquire |
| SeqCst | SeqCst | SeqCst |
compare_and_swap and compare_exchange also differ in their return type. You can use
compare_exchange(...).unwrap_or_else(|x| x) to recover the behavior of compare_and_swap,
but in most cases it is more idiomatic to check whether the return value is Ok or Err
rather than to infer success vs failure based on the value that was read.
During migration, consider whether it makes sense to use compare_exchange_weak instead.
compare_exchange_weak is allowed to fail spuriously even when the comparison succeeds,
which allows the compiler to generate better assembly code when the compare and swap
is used in a loop.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let some_var = AtomicI32::new(5);
assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
assert_eq!(some_var.load(Ordering::Relaxed), 10);1.34.0 · Sourcepub fn compare_exchange(
&self,
current: i32,
new: i32,
success: Ordering,
failure: Ordering,
) -> Result<i32, i32>
pub fn compare_exchange( &self, current: i32, new: i32, success: Ordering, failure: Ordering, ) -> Result<i32, i32>
Stores a value into the atomic integer if the current value is the same as
the current value.
The return value is a result indicating whether the new value was written and
containing the previous value. On success this value is guaranteed to be equal to
current.
compare_exchange takes two Ordering arguments to describe the memory
ordering of this operation. success describes the required ordering for the
read-modify-write operation that takes place if the comparison with current succeeds.
failure describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the successful load
Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let some_var = AtomicI32::new(5);
assert_eq!(some_var.compare_exchange(5, 10,
Ordering::Acquire,
Ordering::Relaxed),
Ok(5));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
assert_eq!(some_var.compare_exchange(6, 12,
Ordering::SeqCst,
Ordering::Acquire),
Err(10));
assert_eq!(some_var.load(Ordering::Relaxed), 10);§Considerations
compare_exchange is a compare-and-swap operation and thus exhibits the usual downsides
of CAS operations. In particular, a load of the value followed by a successful
compare_exchange with the previous load does not ensure that other threads have not
changed the value in the interim! This is usually important when the equality check in
the compare_exchange is being used to check the identity of a value, but equality
does not necessarily imply identity. This is a particularly common case for pointers, as
a pointer holding the same address does not imply that the same object exists at that
address! In this case, compare_exchange can lead to the ABA problem.
1.34.0 · Sourcepub fn compare_exchange_weak(
&self,
current: i32,
new: i32,
success: Ordering,
failure: Ordering,
) -> Result<i32, i32>
pub fn compare_exchange_weak( &self, current: i32, new: i32, success: Ordering, failure: Ordering, ) -> Result<i32, i32>
Stores a value into the atomic integer if the current value is the same as
the current value.
Unlike AtomicI32::compare_exchange,
this function is allowed to spuriously fail even
when the comparison succeeds, which can result in more efficient code on some
platforms. The return value is a result indicating whether the new value was
written and containing the previous value.
compare_exchange_weak takes two Ordering arguments to describe the memory
ordering of this operation. success describes the required ordering for the
read-modify-write operation that takes place if the comparison with current succeeds.
failure describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the successful load
Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let val = AtomicI32::new(4);
let mut old = val.load(Ordering::Relaxed);
loop {
let new = old * 2;
match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
Ok(_) => break,
Err(x) => old = x,
}
}§Considerations
compare_exchange is a compare-and-swap operation and thus exhibits the usual downsides
of CAS operations. In particular, a load of the value followed by a successful
compare_exchange with the previous load does not ensure that other threads have not
changed the value in the interim. This is usually important when the equality check in
the compare_exchange is being used to check the identity of a value, but equality
does not necessarily imply identity. This is a particularly common case for pointers, as
a pointer holding the same address does not imply that the same object exists at that
address! In this case, compare_exchange can lead to the ABA problem.
1.34.0 · Sourcepub fn fetch_add(&self, val: i32, order: Ordering) -> i32
pub fn fetch_add(&self, val: i32, order: Ordering) -> i32
Adds to the current value, returning the previous value.
This operation wraps around on overflow.
fetch_add takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(0);
assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
assert_eq!(foo.load(Ordering::SeqCst), 10);1.34.0 · Sourcepub fn fetch_sub(&self, val: i32, order: Ordering) -> i32
pub fn fetch_sub(&self, val: i32, order: Ordering) -> i32
Subtracts from the current value, returning the previous value.
This operation wraps around on overflow.
fetch_sub takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(20);
assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
assert_eq!(foo.load(Ordering::SeqCst), 10);1.34.0 · Sourcepub fn fetch_and(&self, val: i32, order: Ordering) -> i32
pub fn fetch_and(&self, val: i32, order: Ordering) -> i32
Bitwise “and” with the current value.
Performs a bitwise “and” operation on the current value and the argument val, and
sets the new value to the result.
Returns the previous value.
fetch_and takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(0b101101);
assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b100001);1.34.0 · Sourcepub fn fetch_nand(&self, val: i32, order: Ordering) -> i32
pub fn fetch_nand(&self, val: i32, order: Ordering) -> i32
Bitwise “nand” with the current value.
Performs a bitwise “nand” operation on the current value and the argument val, and
sets the new value to the result.
Returns the previous value.
fetch_nand takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(0x13);
assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));1.34.0 · Sourcepub fn fetch_or(&self, val: i32, order: Ordering) -> i32
pub fn fetch_or(&self, val: i32, order: Ordering) -> i32
Bitwise “or” with the current value.
Performs a bitwise “or” operation on the current value and the argument val, and
sets the new value to the result.
Returns the previous value.
fetch_or takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(0b101101);
assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b111111);1.34.0 · Sourcepub fn fetch_xor(&self, val: i32, order: Ordering) -> i32
pub fn fetch_xor(&self, val: i32, order: Ordering) -> i32
Bitwise “xor” with the current value.
Performs a bitwise “xor” operation on the current value and the argument val, and
sets the new value to the result.
Returns the previous value.
fetch_xor takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(0b101101);
assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b011110);1.45.0 · Sourcepub fn fetch_update<F>(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: F,
) -> Result<i32, i32>
pub fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<i32, i32>
Fetches the value, and applies a function to it that returns an optional
new value. Returns a Result of Ok(previous_value) if the function returned Some(_), else
Err(previous_value).
Note: This may call the function multiple times if the value has been changed from other threads in
the meantime, as long as the function returns Some(_), but the function will have been applied
only once to the stored value.
fetch_update takes two Ordering arguments to describe the memory ordering of this operation.
The first describes the required ordering for when the operation finally succeeds while the second
describes the required ordering for loads. These correspond to the success and failure orderings of
AtomicI32::compare_exchange
respectively.
Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the final successful load
Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Considerations
This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.
It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem if this atomic integer is an index or more generally if knowledge of only the bitwise value of the atomic is not in and of itself sufficient to ensure any required preconditions.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let x = AtomicI32::new(7);
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
assert_eq!(x.load(Ordering::SeqCst), 9);Sourcepub fn try_update(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: impl FnMut(i32) -> Option<i32>,
) -> Result<i32, i32>
🔬This is a nightly-only experimental API. (atomic_try_update)
pub fn try_update( &self, set_order: Ordering, fetch_order: Ordering, f: impl FnMut(i32) -> Option<i32>, ) -> Result<i32, i32>
atomic_try_update)Fetches the value, and applies a function to it that returns an optional
new value. Returns a Result of Ok(previous_value) if the function returned Some(_), else
Err(previous_value).
See also: update.
Note: This may call the function multiple times if the value has been changed from other threads in
the meantime, as long as the function returns Some(_), but the function will have been applied
only once to the stored value.
try_update takes two Ordering arguments to describe the memory ordering of this operation.
The first describes the required ordering for when the operation finally succeeds while the second
describes the required ordering for loads. These correspond to the success and failure orderings of
AtomicI32::compare_exchange
respectively.
Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the final successful load
Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Considerations
This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.
It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem if this atomic integer is an index or more generally if knowledge of only the bitwise value of the atomic is not in and of itself sufficient to ensure any required preconditions.
§Examples
#![feature(atomic_try_update)]
use std::sync::atomic::{AtomicI32, Ordering};
let x = AtomicI32::new(7);
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
assert_eq!(x.load(Ordering::SeqCst), 9);Sourcepub fn update(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: impl FnMut(i32) -> i32,
) -> i32
🔬This is a nightly-only experimental API. (atomic_try_update)
pub fn update( &self, set_order: Ordering, fetch_order: Ordering, f: impl FnMut(i32) -> i32, ) -> i32
atomic_try_update)Fetches the value, applies a function to it that it return a new value. The new value is stored and the old value is returned.
See also: try_update.
Note: This may call the function multiple times if the value has been changed from other threads in the meantime, but the function will have been applied only once to the stored value.
update takes two Ordering arguments to describe the memory ordering of this operation.
The first describes the required ordering for when the operation finally succeeds while the second
describes the required ordering for loads. These correspond to the success and failure orderings of
AtomicI32::compare_exchange
respectively.
Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the final successful load
Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Considerations
This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.
It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem if this atomic integer is an index or more generally if knowledge of only the bitwise value of the atomic is not in and of itself sufficient to ensure any required preconditions.
§Examples
#![feature(atomic_try_update)]
use std::sync::atomic::{AtomicI32, Ordering};
let x = AtomicI32::new(7);
assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
assert_eq!(x.load(Ordering::SeqCst), 9);1.45.0 · Sourcepub fn fetch_max(&self, val: i32, order: Ordering) -> i32
pub fn fetch_max(&self, val: i32, order: Ordering) -> i32
Maximum with the current value.
Finds the maximum of the current value and the argument val, and
sets the new value to the result.
Returns the previous value.
fetch_max takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(23);
assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
assert_eq!(foo.load(Ordering::SeqCst), 42);If you want to obtain the maximum value in one step, you can use the following:
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(23);
let bar = 42;
let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
assert!(max_foo == 42);1.45.0 · Sourcepub fn fetch_min(&self, val: i32, order: Ordering) -> i32
pub fn fetch_min(&self, val: i32, order: Ordering) -> i32
Minimum with the current value.
Finds the minimum of the current value and the argument val, and
sets the new value to the result.
Returns the previous value.
fetch_min takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on
i32.
§Examples
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(23);
assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 23);
assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 22);If you want to obtain the minimum value in one step, you can use the following:
use std::sync::atomic::{AtomicI32, Ordering};
let foo = AtomicI32::new(23);
let bar = 12;
let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
assert_eq!(min_foo, 12);1.70.0 · Sourcepub fn as_ptr(&self) -> *mut i32
pub fn as_ptr(&self) -> *mut i32
Returns a mutable pointer to the underlying integer.
Doing non-atomic reads and writes on the resulting integer can be a data race.
This method is mostly useful for FFI, where the function signature may use
*mut i32 instead of &AtomicI32.
Returning an *mut pointer from a shared reference to this atomic is safe because the
atomic types work with interior mutability. All modifications of an atomic change the value
through a shared reference, and can do so safely as long as they use atomic operations. Any
use of the returned raw pointer requires an unsafe block and still has to uphold the
requirements of the memory model.
§Examples
use std::sync::atomic::AtomicI32;
extern "C" {
fn my_atomic_op(arg: *mut i32);
}
let atomic = AtomicI32::new(1);
// SAFETY: Safe as long as `my_atomic_op` is atomic.
unsafe {
my_atomic_op(atomic.as_ptr());
}