pub enum Request {
    Pong {
        serial: u32,
    },
    Move {
        seat: ObjectId,
        serial: u32,
    },
    Resize {
        seat: ObjectId,
        serial: u32,
        edges: Enum<Resize>,
    },
    SetToplevel,
    SetTransient {
        parent: ObjectId,
        x: i32,
        y: i32,
        flags: Enum<Transient>,
    },
    SetFullscreen {
        method: Enum<FullscreenMethod>,
        framerate: u32,
        output: ObjectId,
    },
    SetPopup {
        seat: ObjectId,
        serial: u32,
        parent: ObjectId,
        x: i32,
        y: i32,
        flags: Enum<Transient>,
    },
    SetMaximized {
        output: ObjectId,
    },
    SetTitle {
        title: String,
    },
    SetClass {
        class_: String,
    },
}

Variants§

§

Pong

respond to a ping event

A client must respond to a ping event with a pong request or the client may be deemed unresponsive.

Fields

§serial: u32

serial number of the ping event

§

Move

start an interactive move

Start a pointer-driven move of the surface.

This request must be used in response to a button press event. The server may ignore move requests depending on the state of the surface (e.g. fullscreen or maximized).

Fields

§seat: ObjectId

seat whose pointer is used

§serial: u32

serial number of the implicit grab on the pointer

§

Resize

start an interactive resize

Start a pointer-driven resizing of the surface.

This request must be used in response to a button press event. The server may ignore resize requests depending on the state of the surface (e.g. fullscreen or maximized).

Fields

§seat: ObjectId

seat whose pointer is used

§serial: u32

serial number of the implicit grab on the pointer

§edges: Enum<Resize>

which edge or corner is being dragged

§

SetToplevel

make the surface a toplevel surface

Map the surface as a toplevel surface.

A toplevel surface is not fullscreen, maximized or transient.

§

SetTransient

make the surface a transient surface

Map the surface relative to an existing surface.

The x and y arguments specify the location of the upper left corner of the surface relative to the upper left corner of the parent surface, in surface-local coordinates.

The flags argument controls details of the transient behaviour.

Fields

§parent: ObjectId

parent surface

§x: i32

surface-local x coordinate

§y: i32

surface-local y coordinate

§flags: Enum<Transient>

transient surface behavior

§

SetFullscreen

make the surface a fullscreen surface

Map the surface as a fullscreen surface.

If an output parameter is given then the surface will be made fullscreen on that output. If the client does not specify the output then the compositor will apply its policy - usually choosing the output on which the surface has the biggest surface area.

The client may specify a method to resolve a size conflict between the output size and the surface size - this is provided through the method parameter.

The framerate parameter is used only when the method is set to “driver”, to indicate the preferred framerate. A value of 0 indicates that the client does not care about framerate. The framerate is specified in mHz, that is framerate of 60000 is 60Hz.

A method of “scale” or “driver” implies a scaling operation of the surface, either via a direct scaling operation or a change of the output mode. This will override any kind of output scaling, so that mapping a surface with a buffer size equal to the mode can fill the screen independent of buffer_scale.

A method of “fill” means we don’t scale up the buffer, however any output scale is applied. This means that you may run into an edge case where the application maps a buffer with the same size of the output mode but buffer_scale 1 (thus making a surface larger than the output). In this case it is allowed to downscale the results to fit the screen.

The compositor must reply to this request with a configure event with the dimensions for the output on which the surface will be made fullscreen.

Fields

§method: Enum<FullscreenMethod>

method for resolving size conflict

§framerate: u32

framerate in mHz

§output: ObjectId

output on which the surface is to be fullscreen

§

SetPopup

make the surface a popup surface

Map the surface as a popup.

A popup surface is a transient surface with an added pointer grab.

An existing implicit grab will be changed to owner-events mode, and the popup grab will continue after the implicit grab ends (i.e. releasing the mouse button does not cause the popup to be unmapped).

The popup grab continues until the window is destroyed or a mouse button is pressed in any other client’s window. A click in any of the client’s surfaces is reported as normal, however, clicks in other clients’ surfaces will be discarded and trigger the callback.

The x and y arguments specify the location of the upper left corner of the surface relative to the upper left corner of the parent surface, in surface-local coordinates.

Fields

§seat: ObjectId

seat whose pointer is used

§serial: u32

serial number of the implicit grab on the pointer

§parent: ObjectId

parent surface

§x: i32

surface-local x coordinate

§y: i32

surface-local y coordinate

§flags: Enum<Transient>

transient surface behavior

§

SetMaximized

make the surface a maximized surface

Map the surface as a maximized surface.

If an output parameter is given then the surface will be maximized on that output. If the client does not specify the output then the compositor will apply its policy - usually choosing the output on which the surface has the biggest surface area.

The compositor will reply with a configure event telling the expected new surface size. The operation is completed on the next buffer attach to this surface.

A maximized surface typically fills the entire output it is bound to, except for desktop elements such as panels. This is the main difference between a maximized shell surface and a fullscreen shell surface.

The details depend on the compositor implementation.

Fields

§output: ObjectId

output on which the surface is to be maximized

§

SetTitle

set surface title

Set a short title for the surface.

This string may be used to identify the surface in a task bar, window list, or other user interface elements provided by the compositor.

The string must be encoded in UTF-8.

Fields

§title: String

surface title

§

SetClass

set surface class

Set a class for the surface.

The surface class identifies the general class of applications to which the surface belongs. A common convention is to use the file name (or the full path if it is a non-standard location) of the application’s .desktop file as the class.

Fields

§class_: String

surface class

Trait Implementations§

Source§

impl Debug for Request

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl FromArgs for Request

Source§

fn from_args(op: u16, args: Vec<Arg>) -> Result<Self, Error>

Consumes |args| creates an instance of self.
Source§

impl MessageType for Request

Source§

fn log(&self, this: ObjectId) -> String

Generates a string suitable for protocol logging this message.
Source§

fn message_name(&self) -> &'static CStr

Returns a static CStr reference that describes the interface/method of this message. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V