num_traits::float

Trait Float

Source
pub trait Float:
    Num
    + Copy
    + NumCast
    + PartialOrd
    + Neg<Output = Self> {
Show 59 methods // Required methods fn nan() -> Self; fn infinity() -> Self; fn neg_infinity() -> Self; fn neg_zero() -> Self; fn min_value() -> Self; fn min_positive_value() -> Self; fn max_value() -> Self; fn is_nan(self) -> bool; fn is_infinite(self) -> bool; fn is_finite(self) -> bool; fn is_normal(self) -> bool; fn classify(self) -> FpCategory; fn floor(self) -> Self; fn ceil(self) -> Self; fn round(self) -> Self; fn trunc(self) -> Self; fn fract(self) -> Self; fn abs(self) -> Self; fn signum(self) -> Self; fn is_sign_positive(self) -> bool; fn is_sign_negative(self) -> bool; fn mul_add(self, a: Self, b: Self) -> Self; fn recip(self) -> Self; fn powi(self, n: i32) -> Self; fn powf(self, n: Self) -> Self; fn sqrt(self) -> Self; fn exp(self) -> Self; fn exp2(self) -> Self; fn ln(self) -> Self; fn log(self, base: Self) -> Self; fn log2(self) -> Self; fn log10(self) -> Self; fn max(self, other: Self) -> Self; fn min(self, other: Self) -> Self; fn abs_sub(self, other: Self) -> Self; fn cbrt(self) -> Self; fn hypot(self, other: Self) -> Self; fn sin(self) -> Self; fn cos(self) -> Self; fn tan(self) -> Self; fn asin(self) -> Self; fn acos(self) -> Self; fn atan(self) -> Self; fn atan2(self, other: Self) -> Self; fn sin_cos(self) -> (Self, Self); fn exp_m1(self) -> Self; fn ln_1p(self) -> Self; fn sinh(self) -> Self; fn cosh(self) -> Self; fn tanh(self) -> Self; fn asinh(self) -> Self; fn acosh(self) -> Self; fn atanh(self) -> Self; fn integer_decode(self) -> (u64, i16, i8); // Provided methods fn epsilon() -> Self { ... } fn is_subnormal(self) -> bool { ... } fn to_degrees(self) -> Self { ... } fn to_radians(self) -> Self { ... } fn copysign(self, sign: Self) -> Self { ... }
}
Expand description

Generic trait for floating point numbers

This trait is only available with the std feature, or with the libm feature otherwise.

Required Methods§

Source

fn nan() -> Self

Returns the NaN value.

use num_traits::Float;

let nan: f32 = Float::nan();

assert!(nan.is_nan());
Source

fn infinity() -> Self

Returns the infinite value.

use num_traits::Float;
use std::f32;

let infinity: f32 = Float::infinity();

assert!(infinity.is_infinite());
assert!(!infinity.is_finite());
assert!(infinity > f32::MAX);
Source

fn neg_infinity() -> Self

Returns the negative infinite value.

use num_traits::Float;
use std::f32;

let neg_infinity: f32 = Float::neg_infinity();

assert!(neg_infinity.is_infinite());
assert!(!neg_infinity.is_finite());
assert!(neg_infinity < f32::MIN);
Source

fn neg_zero() -> Self

Returns -0.0.

use num_traits::{Zero, Float};

let inf: f32 = Float::infinity();
let zero: f32 = Zero::zero();
let neg_zero: f32 = Float::neg_zero();

assert_eq!(zero, neg_zero);
assert_eq!(7.0f32/inf, zero);
assert_eq!(zero * 10.0, zero);
Source

fn min_value() -> Self

Returns the smallest finite value that this type can represent.

use num_traits::Float;
use std::f64;

let x: f64 = Float::min_value();

assert_eq!(x, f64::MIN);
Source

fn min_positive_value() -> Self

Returns the smallest positive, normalized value that this type can represent.

use num_traits::Float;
use std::f64;

let x: f64 = Float::min_positive_value();

assert_eq!(x, f64::MIN_POSITIVE);
Source

fn max_value() -> Self

Returns the largest finite value that this type can represent.

use num_traits::Float;
use std::f64;

let x: f64 = Float::max_value();
assert_eq!(x, f64::MAX);
Source

fn is_nan(self) -> bool

Returns true if this value is NaN and false otherwise.

use num_traits::Float;
use std::f64;

let nan = f64::NAN;
let f = 7.0;

assert!(nan.is_nan());
assert!(!f.is_nan());
Source

fn is_infinite(self) -> bool

Returns true if this value is positive infinity or negative infinity and false otherwise.

use num_traits::Float;
use std::f32;

let f = 7.0f32;
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = f32::NAN;

assert!(!f.is_infinite());
assert!(!nan.is_infinite());

assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
Source

fn is_finite(self) -> bool

Returns true if this number is neither infinite nor NaN.

use num_traits::Float;
use std::f32;

let f = 7.0f32;
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = f32::NAN;

assert!(f.is_finite());

assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
Source

fn is_normal(self) -> bool

Returns true if the number is neither zero, infinite, subnormal, or NaN.

use num_traits::Float;
use std::f32;

let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
let max = f32::MAX;
let lower_than_min = 1.0e-40_f32;
let zero = 0.0f32;

assert!(min.is_normal());
assert!(max.is_normal());

assert!(!zero.is_normal());
assert!(!f32::NAN.is_normal());
assert!(!f32::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());
Source

fn classify(self) -> FpCategory

Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.

use num_traits::Float;
use std::num::FpCategory;
use std::f32;

let num = 12.4f32;
let inf = f32::INFINITY;

assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);
Source

fn floor(self) -> Self

Returns the largest integer less than or equal to a number.

use num_traits::Float;

let f = 3.99;
let g = 3.0;

assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);
Source

fn ceil(self) -> Self

Returns the smallest integer greater than or equal to a number.

use num_traits::Float;

let f = 3.01;
let g = 4.0;

assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);
Source

fn round(self) -> Self

Returns the nearest integer to a number. Round half-way cases away from 0.0.

use num_traits::Float;

let f = 3.3;
let g = -3.3;

assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);
Source

fn trunc(self) -> Self

Return the integer part of a number.

use num_traits::Float;

let f = 3.3;
let g = -3.7;

assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), -3.0);
Source

fn fract(self) -> Self

Returns the fractional part of a number.

use num_traits::Float;

let x = 3.5;
let y = -3.5;
let abs_difference_x = (x.fract() - 0.5).abs();
let abs_difference_y = (y.fract() - (-0.5)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
Source

fn abs(self) -> Self

Computes the absolute value of self. Returns Float::nan() if the number is Float::nan().

use num_traits::Float;
use std::f64;

let x = 3.5;
let y = -3.5;

let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

assert!(f64::NAN.abs().is_nan());
Source

fn signum(self) -> Self

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or Float::infinity()
  • -1.0 if the number is negative, -0.0 or Float::neg_infinity()
  • Float::nan() if the number is Float::nan()
use num_traits::Float;
use std::f64;

let f = 3.5;

assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);

assert!(f64::NAN.signum().is_nan());
Source

fn is_sign_positive(self) -> bool

Returns true if self is positive, including +0.0, Float::infinity(), and Float::nan().

use num_traits::Float;
use std::f64;

let nan: f64 = f64::NAN;
let neg_nan: f64 = -f64::NAN;

let f = 7.0;
let g = -7.0;

assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
assert!(nan.is_sign_positive());
assert!(!neg_nan.is_sign_positive());
Source

fn is_sign_negative(self) -> bool

Returns true if self is negative, including -0.0, Float::neg_infinity(), and -Float::nan().

use num_traits::Float;
use std::f64;

let nan: f64 = f64::NAN;
let neg_nan: f64 = -f64::NAN;

let f = 7.0;
let g = -7.0;

assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
assert!(!nan.is_sign_negative());
assert!(neg_nan.is_sign_negative());
Source

fn mul_add(self, a: Self, b: Self) -> Self

Fused multiply-add. Computes (self * a) + b with only one rounding error, yielding a more accurate result than an unfused multiply-add.

Using mul_add can be more performant than an unfused multiply-add if the target architecture has a dedicated fma CPU instruction.

use num_traits::Float;

let m = 10.0;
let x = 4.0;
let b = 60.0;

// 100.0
let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();

assert!(abs_difference < 1e-10);
Source

fn recip(self) -> Self

Take the reciprocal (inverse) of a number, 1/x.

use num_traits::Float;

let x = 2.0;
let abs_difference = (x.recip() - (1.0/x)).abs();

assert!(abs_difference < 1e-10);
Source

fn powi(self, n: i32) -> Self

Raise a number to an integer power.

Using this function is generally faster than using powf

use num_traits::Float;

let x = 2.0;
let abs_difference = (x.powi(2) - x*x).abs();

assert!(abs_difference < 1e-10);
Source

fn powf(self, n: Self) -> Self

Raise a number to a floating point power.

use num_traits::Float;

let x = 2.0;
let abs_difference = (x.powf(2.0) - x*x).abs();

assert!(abs_difference < 1e-10);
Source

fn sqrt(self) -> Self

Take the square root of a number.

Returns NaN if self is a negative number.

use num_traits::Float;

let positive = 4.0;
let negative = -4.0;

let abs_difference = (positive.sqrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());
Source

fn exp(self) -> Self

Returns e^(self), (the exponential function).

use num_traits::Float;

let one = 1.0;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);
Source

fn exp2(self) -> Self

Returns 2^(self).

use num_traits::Float;

let f = 2.0;

// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();

assert!(abs_difference < 1e-10);
Source

fn ln(self) -> Self

Returns the natural logarithm of the number.

use num_traits::Float;

let one = 1.0;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);
Source

fn log(self, base: Self) -> Self

Returns the logarithm of the number with respect to an arbitrary base.

use num_traits::Float;

let ten = 10.0;
let two = 2.0;

// log10(10) - 1 == 0
let abs_difference_10 = (ten.log(10.0) - 1.0).abs();

// log2(2) - 1 == 0
let abs_difference_2 = (two.log(2.0) - 1.0).abs();

assert!(abs_difference_10 < 1e-10);
assert!(abs_difference_2 < 1e-10);
Source

fn log2(self) -> Self

Returns the base 2 logarithm of the number.

use num_traits::Float;

let two = 2.0;

// log2(2) - 1 == 0
let abs_difference = (two.log2() - 1.0).abs();

assert!(abs_difference < 1e-10);
Source

fn log10(self) -> Self

Returns the base 10 logarithm of the number.

use num_traits::Float;

let ten = 10.0;

// log10(10) - 1 == 0
let abs_difference = (ten.log10() - 1.0).abs();

assert!(abs_difference < 1e-10);
Source

fn max(self, other: Self) -> Self

Returns the maximum of the two numbers.

use num_traits::Float;

let x = 1.0;
let y = 2.0;

assert_eq!(x.max(y), y);
Source

fn min(self, other: Self) -> Self

Returns the minimum of the two numbers.

use num_traits::Float;

let x = 1.0;
let y = 2.0;

assert_eq!(x.min(y), x);
Source

fn abs_sub(self, other: Self) -> Self

The positive difference of two numbers.

  • If self <= other: 0:0
  • Else: self - other
use num_traits::Float;

let x = 3.0;
let y = -3.0;

let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
Source

fn cbrt(self) -> Self

Take the cubic root of a number.

use num_traits::Float;

let x = 8.0;

// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
Source

fn hypot(self, other: Self) -> Self

Calculate the length of the hypotenuse of a right-angle triangle given legs of length x and y.

use num_traits::Float;

let x = 2.0;
let y = 3.0;

// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();

assert!(abs_difference < 1e-10);
Source

fn sin(self) -> Self

Computes the sine of a number (in radians).

use num_traits::Float;
use std::f64;

let x = f64::consts::PI/2.0;

let abs_difference = (x.sin() - 1.0).abs();

assert!(abs_difference < 1e-10);
Source

fn cos(self) -> Self

Computes the cosine of a number (in radians).

use num_traits::Float;
use std::f64;

let x = 2.0*f64::consts::PI;

let abs_difference = (x.cos() - 1.0).abs();

assert!(abs_difference < 1e-10);
Source

fn tan(self) -> Self

Computes the tangent of a number (in radians).

use num_traits::Float;
use std::f64;

let x = f64::consts::PI/4.0;
let abs_difference = (x.tan() - 1.0).abs();

assert!(abs_difference < 1e-14);
Source

fn asin(self) -> Self

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

use num_traits::Float;
use std::f64;

let f = f64::consts::PI / 2.0;

// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();

assert!(abs_difference < 1e-10);
Source

fn acos(self) -> Self

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

use num_traits::Float;
use std::f64;

let f = f64::consts::PI / 4.0;

// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();

assert!(abs_difference < 1e-10);
Source

fn atan(self) -> Self

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

use num_traits::Float;

let f = 1.0;

// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();

assert!(abs_difference < 1e-10);
Source

fn atan2(self, other: Self) -> Self

Computes the four quadrant arctangent of self (y) and other (x).

  • x = 0, y = 0: 0
  • x >= 0: arctan(y/x) -> [-pi/2, pi/2]
  • y >= 0: arctan(y/x) + pi -> (pi/2, pi]
  • y < 0: arctan(y/x) - pi -> (-pi, -pi/2)
use num_traits::Float;
use std::f64;

let pi = f64::consts::PI;
// All angles from horizontal right (+x)
// 45 deg counter-clockwise
let x1 = 3.0;
let y1 = -3.0;

// 135 deg clockwise
let x2 = -3.0;
let y2 = 3.0;

let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();

assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);
Source

fn sin_cos(self) -> (Self, Self)

Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).

use num_traits::Float;
use std::f64;

let x = f64::consts::PI/4.0;
let f = x.sin_cos();

let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_0 < 1e-10);
Source

fn exp_m1(self) -> Self

Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.

use num_traits::Float;

let x = 7.0;

// e^(ln(7)) - 1
let abs_difference = (x.ln().exp_m1() - 6.0).abs();

assert!(abs_difference < 1e-10);
Source

fn ln_1p(self) -> Self

Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.

use num_traits::Float;
use std::f64;

let x = f64::consts::E - 1.0;

// ln(1 + (e - 1)) == ln(e) == 1
let abs_difference = (x.ln_1p() - 1.0).abs();

assert!(abs_difference < 1e-10);
Source

fn sinh(self) -> Self

Hyperbolic sine function.

use num_traits::Float;
use std::f64;

let e = f64::consts::E;
let x = 1.0;

let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = (e*e - 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

assert!(abs_difference < 1e-10);
Source

fn cosh(self) -> Self

Hyperbolic cosine function.

use num_traits::Float;
use std::f64;

let e = f64::consts::E;
let x = 1.0;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = (e*e + 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

// Same result
assert!(abs_difference < 1.0e-10);
Source

fn tanh(self) -> Self

Hyperbolic tangent function.

use num_traits::Float;
use std::f64;

let e = f64::consts::E;
let x = 1.0;

let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
let abs_difference = (f - g).abs();

assert!(abs_difference < 1.0e-10);
Source

fn asinh(self) -> Self

Inverse hyperbolic sine function.

use num_traits::Float;

let x = 1.0;
let f = x.sinh().asinh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);
Source

fn acosh(self) -> Self

Inverse hyperbolic cosine function.

use num_traits::Float;

let x = 1.0;
let f = x.cosh().acosh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);
Source

fn atanh(self) -> Self

Inverse hyperbolic tangent function.

use num_traits::Float;
use std::f64;

let e = f64::consts::E;
let f = e.tanh().atanh();

let abs_difference = (f - e).abs();

assert!(abs_difference < 1.0e-10);
Source

fn integer_decode(self) -> (u64, i16, i8)

Returns the mantissa, base 2 exponent, and sign as integers, respectively. The original number can be recovered by sign * mantissa * 2 ^ exponent.

use num_traits::Float;

let num = 2.0f32;

// (8388608, -22, 1)
let (mantissa, exponent, sign) = Float::integer_decode(num);
let sign_f = sign as f32;
let mantissa_f = mantissa as f32;
let exponent_f = num.powf(exponent as f32);

// 1 * 8388608 * 2^(-22) == 2
let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();

assert!(abs_difference < 1e-10);

Provided Methods§

Source

fn epsilon() -> Self

Returns epsilon, a small positive value.

use num_traits::Float;
use std::f64;

let x: f64 = Float::epsilon();

assert_eq!(x, f64::EPSILON);
§Panics

The default implementation will panic if f32::EPSILON cannot be cast to Self.

Source

fn is_subnormal(self) -> bool

Returns true if the number is subnormal.

use num_traits::Float;
use std::f64;

let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0_f64;

assert!(!min.is_subnormal());
assert!(!max.is_subnormal());

assert!(!zero.is_subnormal());
assert!(!f64::NAN.is_subnormal());
assert!(!f64::INFINITY.is_subnormal());
// Values between `0` and `min` are Subnormal.
assert!(lower_than_min.is_subnormal());
Source

fn to_degrees(self) -> Self

Converts radians to degrees.

use std::f64::consts;

let angle = consts::PI;

let abs_difference = (angle.to_degrees() - 180.0).abs();

assert!(abs_difference < 1e-10);
Source

fn to_radians(self) -> Self

Converts degrees to radians.

use std::f64::consts;

let angle = 180.0_f64;

let abs_difference = (angle.to_radians() - consts::PI).abs();

assert!(abs_difference < 1e-10);
Source

fn copysign(self, sign: Self) -> Self

Returns a number composed of the magnitude of self and the sign of sign.

Equal to self if the sign of self and sign are the same, otherwise equal to -self. If self is a NAN, then a NAN with the sign of sign is returned.

§Examples
use num_traits::Float;

let f = 3.5_f32;

assert_eq!(f.copysign(0.42), 3.5_f32);
assert_eq!(f.copysign(-0.42), -3.5_f32);
assert_eq!((-f).copysign(0.42), 3.5_f32);
assert_eq!((-f).copysign(-0.42), -3.5_f32);

assert!(f32::nan().copysign(1.0).is_nan());

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl Float for f32

Source§

fn nan() -> Self

Source§

fn infinity() -> Self

Source§

fn neg_infinity() -> Self

Source§

fn neg_zero() -> Self

Source§

fn min_value() -> Self

Source§

fn min_positive_value() -> Self

Source§

fn epsilon() -> Self

Source§

fn max_value() -> Self

Source§

fn abs_sub(self, other: Self) -> Self

Source§

fn integer_decode(self) -> (u64, i16, i8)

Source§

fn is_nan(self) -> bool

Source§

fn is_infinite(self) -> bool

Source§

fn is_finite(self) -> bool

Source§

fn is_normal(self) -> bool

Source§

fn classify(self) -> FpCategory

Source§

fn floor(self) -> Self

Source§

fn ceil(self) -> Self

Source§

fn round(self) -> Self

Source§

fn trunc(self) -> Self

Source§

fn fract(self) -> Self

Source§

fn abs(self) -> Self

Source§

fn signum(self) -> Self

Source§

fn is_sign_positive(self) -> bool

Source§

fn is_sign_negative(self) -> bool

Source§

fn mul_add(self, a: Self, b: Self) -> Self

Source§

fn recip(self) -> Self

Source§

fn powi(self, n: i32) -> Self

Source§

fn powf(self, n: Self) -> Self

Source§

fn sqrt(self) -> Self

Source§

fn exp(self) -> Self

Source§

fn exp2(self) -> Self

Source§

fn ln(self) -> Self

Source§

fn log(self, base: Self) -> Self

Source§

fn log2(self) -> Self

Source§

fn log10(self) -> Self

Source§

fn to_degrees(self) -> Self

Source§

fn to_radians(self) -> Self

Source§

fn max(self, other: Self) -> Self

Source§

fn min(self, other: Self) -> Self

Source§

fn cbrt(self) -> Self

Source§

fn hypot(self, other: Self) -> Self

Source§

fn sin(self) -> Self

Source§

fn cos(self) -> Self

Source§

fn tan(self) -> Self

Source§

fn asin(self) -> Self

Source§

fn acos(self) -> Self

Source§

fn atan(self) -> Self

Source§

fn atan2(self, other: Self) -> Self

Source§

fn sin_cos(self) -> (Self, Self)

Source§

fn exp_m1(self) -> Self

Source§

fn ln_1p(self) -> Self

Source§

fn sinh(self) -> Self

Source§

fn cosh(self) -> Self

Source§

fn tanh(self) -> Self

Source§

fn asinh(self) -> Self

Source§

fn acosh(self) -> Self

Source§

fn atanh(self) -> Self

Source§

fn copysign(self, sign: Self) -> Self

Source§

fn is_subnormal(self) -> bool

Source§

impl Float for f64

Source§

fn nan() -> Self

Source§

fn infinity() -> Self

Source§

fn neg_infinity() -> Self

Source§

fn neg_zero() -> Self

Source§

fn min_value() -> Self

Source§

fn min_positive_value() -> Self

Source§

fn epsilon() -> Self

Source§

fn max_value() -> Self

Source§

fn abs_sub(self, other: Self) -> Self

Source§

fn integer_decode(self) -> (u64, i16, i8)

Source§

fn is_nan(self) -> bool

Source§

fn is_infinite(self) -> bool

Source§

fn is_finite(self) -> bool

Source§

fn is_normal(self) -> bool

Source§

fn classify(self) -> FpCategory

Source§

fn floor(self) -> Self

Source§

fn ceil(self) -> Self

Source§

fn round(self) -> Self

Source§

fn trunc(self) -> Self

Source§

fn fract(self) -> Self

Source§

fn abs(self) -> Self

Source§

fn signum(self) -> Self

Source§

fn is_sign_positive(self) -> bool

Source§

fn is_sign_negative(self) -> bool

Source§

fn mul_add(self, a: Self, b: Self) -> Self

Source§

fn recip(self) -> Self

Source§

fn powi(self, n: i32) -> Self

Source§

fn powf(self, n: Self) -> Self

Source§

fn sqrt(self) -> Self

Source§

fn exp(self) -> Self

Source§

fn exp2(self) -> Self

Source§

fn ln(self) -> Self

Source§

fn log(self, base: Self) -> Self

Source§

fn log2(self) -> Self

Source§

fn log10(self) -> Self

Source§

fn to_degrees(self) -> Self

Source§

fn to_radians(self) -> Self

Source§

fn max(self, other: Self) -> Self

Source§

fn min(self, other: Self) -> Self

Source§

fn cbrt(self) -> Self

Source§

fn hypot(self, other: Self) -> Self

Source§

fn sin(self) -> Self

Source§

fn cos(self) -> Self

Source§

fn tan(self) -> Self

Source§

fn asin(self) -> Self

Source§

fn acos(self) -> Self

Source§

fn atan(self) -> Self

Source§

fn atan2(self, other: Self) -> Self

Source§

fn sin_cos(self) -> (Self, Self)

Source§

fn exp_m1(self) -> Self

Source§

fn ln_1p(self) -> Self

Source§

fn sinh(self) -> Self

Source§

fn cosh(self) -> Self

Source§

fn tanh(self) -> Self

Source§

fn asinh(self) -> Self

Source§

fn acosh(self) -> Self

Source§

fn atanh(self) -> Self

Source§

fn copysign(self, sign: Self) -> Self

Source§

fn is_subnormal(self) -> bool

Implementors§