zerocopy/pointer/
ptr.rs

1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{
10    fmt::{Debug, Formatter},
11    marker::PhantomData,
12};
13
14use crate::{
15    pointer::{
16        inner::PtrInner,
17        invariant::*,
18        transmute::{MutationCompatible, SizeEq, TransmuteFromPtr},
19    },
20    AlignmentError, CastError, CastType, KnownLayout, SizeError, TryFromBytes, ValidityError,
21};
22
23/// Module used to gate access to [`Ptr`]'s fields.
24mod def {
25    #[cfg(doc)]
26    use super::super::invariant;
27    use super::*;
28
29    /// A raw pointer with more restrictions.
30    ///
31    /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
32    /// following ways (note that these requirements only hold of non-zero-sized
33    /// referents):
34    /// - It must derive from a valid allocation.
35    /// - It must reference a byte range which is contained inside the
36    ///   allocation from which it derives.
37    ///   - As a consequence, the byte range it references must have a size
38    ///     which does not overflow `isize`.
39    ///
40    /// Depending on how `Ptr` is parameterized, it may have additional
41    /// invariants:
42    /// - `ptr` conforms to the aliasing invariant of
43    ///   [`I::Aliasing`](invariant::Aliasing).
44    /// - `ptr` conforms to the alignment invariant of
45    ///   [`I::Alignment`](invariant::Alignment).
46    /// - `ptr` conforms to the validity invariant of
47    ///   [`I::Validity`](invariant::Validity).
48    ///
49    /// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`.
50    ///
51    /// [`NonNull<T>`]: core::ptr::NonNull
52    /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
53    pub struct Ptr<'a, T, I>
54    where
55        T: ?Sized,
56        I: Invariants,
57    {
58        /// # Invariants
59        ///
60        /// 0. `ptr` conforms to the aliasing invariant of
61        ///    [`I::Aliasing`](invariant::Aliasing).
62        /// 1. `ptr` conforms to the alignment invariant of
63        ///    [`I::Alignment`](invariant::Alignment).
64        /// 2. `ptr` conforms to the validity invariant of
65        ///    [`I::Validity`](invariant::Validity).
66        // SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`.
67        ptr: PtrInner<'a, T>,
68        _invariants: PhantomData<I>,
69    }
70
71    impl<'a, T, I> Ptr<'a, T, I>
72    where
73        T: 'a + ?Sized,
74        I: Invariants,
75    {
76        /// Constructs a new `Ptr` from a [`PtrInner`].
77        ///
78        /// # Safety
79        ///
80        /// The caller promises that:
81        ///
82        /// 0. `ptr` conforms to the aliasing invariant of
83        ///    [`I::Aliasing`](invariant::Aliasing).
84        /// 1. `ptr` conforms to the alignment invariant of
85        ///    [`I::Alignment`](invariant::Alignment).
86        /// 2. `ptr` conforms to the validity invariant of
87        ///    [`I::Validity`](invariant::Validity).
88        pub(crate) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> {
89            // SAFETY: The caller has promised to satisfy all safety invariants
90            // of `Ptr`.
91            Self { ptr, _invariants: PhantomData }
92        }
93
94        /// Converts this `Ptr<T>` to a [`PtrInner<T>`].
95        ///
96        /// Note that this method does not consume `self`. The caller should
97        /// watch out for `unsafe` code which uses the returned value in a way
98        /// that violates the safety invariants of `self`.
99        pub(crate) fn as_inner(&self) -> PtrInner<'a, T> {
100            self.ptr
101        }
102    }
103}
104
105#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
106pub use def::Ptr;
107
108/// External trait implementations on [`Ptr`].
109mod _external {
110    use super::*;
111
112    /// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants
113    /// (besides aliasing) are unaffected by the number of references that exist
114    /// to `Ptr`'s referent. The notable cases are:
115    /// - Alignment is a property of the referent type (`T`) and the address,
116    ///   both of which are unchanged
117    /// - Let `S(T, V)` be the set of bit values permitted to appear in the
118    ///   referent of a `Ptr<T, I: Invariants<Validity = V>>`. Since this copy
119    ///   does not change `I::Validity` or `T`, `S(T, I::Validity)` is also
120    ///   unchanged.
121    ///
122    ///   We are required to guarantee that the referents of the original `Ptr`
123    ///   and of the copy (which, of course, are actually the same since they
124    ///   live in the same byte address range) both remain in the set `S(T,
125    ///   I::Validity)`. Since this invariant holds on the original `Ptr`, it
126    ///   cannot be violated by the original `Ptr`, and thus the original `Ptr`
127    ///   cannot be used to violate this invariant on the copy. The inverse
128    ///   holds as well.
129    impl<'a, T, I> Copy for Ptr<'a, T, I>
130    where
131        T: 'a + ?Sized,
132        I: Invariants<Aliasing = Shared>,
133    {
134    }
135
136    /// SAFETY: See the safety comment on `Copy`.
137    impl<'a, T, I> Clone for Ptr<'a, T, I>
138    where
139        T: 'a + ?Sized,
140        I: Invariants<Aliasing = Shared>,
141    {
142        #[inline]
143        fn clone(&self) -> Self {
144            *self
145        }
146    }
147
148    impl<'a, T, I> Debug for Ptr<'a, T, I>
149    where
150        T: 'a + ?Sized,
151        I: Invariants,
152    {
153        #[inline]
154        fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
155            self.as_inner().as_non_null().fmt(f)
156        }
157    }
158}
159
160/// Methods for converting to and from `Ptr` and Rust's safe reference types.
161mod _conversions {
162    use super::*;
163    use crate::pointer::cast::{CastExact, CastSized, IdCast};
164
165    /// `&'a T` → `Ptr<'a, T>`
166    impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
167    where
168        T: 'a + ?Sized,
169    {
170        /// Constructs a `Ptr` from a shared reference.
171        #[doc(hidden)]
172        #[inline(always)]
173        pub fn from_ref(ptr: &'a T) -> Self {
174            let inner = PtrInner::from_ref(ptr);
175            // SAFETY:
176            // 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing
177            //    invariant of `Shared`.
178            // 1. `ptr`, by invariant on `&'a T`, conforms to the alignment
179            //    invariant of `Aligned`.
180            // 2. `ptr`'s referent, by invariant on `&'a T`, is a bit-valid `T`.
181            //    This satisfies the requirement that a `Ptr<T, (_, _, Valid)>`
182            //    point to a bit-valid `T`. Even if `T` permits interior
183            //    mutation, this invariant guarantees that the returned `Ptr`
184            //    can only ever be used to modify the referent to store
185            //    bit-valid `T`s, which ensures that the returned `Ptr` cannot
186            //    be used to violate the soundness of the original `ptr: &'a T`
187            //    or of any other references that may exist to the same
188            //    referent.
189            unsafe { Self::from_inner(inner) }
190        }
191    }
192
193    /// `&'a mut T` → `Ptr<'a, T>`
194    impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
195    where
196        T: 'a + ?Sized,
197    {
198        /// Constructs a `Ptr` from an exclusive reference.
199        #[doc(hidden)]
200        #[inline(always)]
201        pub fn from_mut(ptr: &'a mut T) -> Self {
202            let inner = PtrInner::from_mut(ptr);
203            // SAFETY:
204            // 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
205            //    invariant of `Exclusive`.
206            // 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
207            //    invariant of `Aligned`.
208            // 2. `ptr`'s referent, by invariant on `&'a mut T`, is a bit-valid
209            //    `T`. This satisfies the requirement that a `Ptr<T, (_, _,
210            //    Valid)>` point to a bit-valid `T`. This invariant guarantees
211            //    that the returned `Ptr` can only ever be used to modify the
212            //    referent to store bit-valid `T`s, which ensures that the
213            //    returned `Ptr` cannot be used to violate the soundness of the
214            //    original `ptr: &'a mut T`.
215            unsafe { Self::from_inner(inner) }
216        }
217    }
218
219    /// `Ptr<'a, T>` → `&'a T`
220    impl<'a, T, I> Ptr<'a, T, I>
221    where
222        T: 'a + ?Sized,
223        I: Invariants<Alignment = Aligned, Validity = Valid>,
224        I::Aliasing: Reference,
225    {
226        /// Converts `self` to a shared reference.
227        // This consumes `self`, not `&self`, because `self` is, logically, a
228        // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
229        // this doesn't prevent the caller from still using the pointer after
230        // calling `as_ref`.
231        #[allow(clippy::wrong_self_convention)]
232        pub(crate) fn as_ref(self) -> &'a T {
233            let raw = self.as_inner().as_non_null();
234            // SAFETY: `self` satisfies the `Aligned` invariant, so we know that
235            // `raw` is validly-aligned for `T`.
236            #[cfg(miri)]
237            unsafe {
238                crate::util::miri_promise_symbolic_alignment(
239                    raw.as_ptr().cast(),
240                    core::mem::align_of_val_raw(raw.as_ptr()),
241                );
242            }
243            // SAFETY: This invocation of `NonNull::as_ref` satisfies its
244            // documented safety preconditions:
245            //
246            // 1. The pointer is properly aligned. This is ensured by-contract
247            //    on `Ptr`, because the `I::Alignment` is `Aligned`.
248            //
249            // 2. If the pointer's referent is not zero-sized, then the pointer
250            //    must be “dereferenceable” in the sense defined in the module
251            //    documentation; i.e.:
252            //
253            //    > The memory range of the given size starting at the pointer
254            //    > must all be within the bounds of a single allocated object.
255            //    > [2]
256            //
257            //   This is ensured by contract on all `PtrInner`s.
258            //
259            // 3. The pointer must point to a validly-initialized instance of
260            //    `T`. This is ensured by-contract on `Ptr`, because the
261            //    `I::Validity` is `Valid`.
262            //
263            // 4. You must enforce Rust’s aliasing rules. This is ensured by
264            //    contract on `Ptr`, because `I::Aliasing: Reference`. Either it
265            //    is `Shared` or `Exclusive`. If it is `Shared`, other
266            //    references may not mutate the referent outside of
267            //    `UnsafeCell`s.
268            //
269            // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
270            // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
271            unsafe { raw.as_ref() }
272        }
273    }
274
275    impl<'a, T, I> Ptr<'a, T, I>
276    where
277        T: 'a + ?Sized,
278        I: Invariants,
279        I::Aliasing: Reference,
280    {
281        /// Reborrows `self`, producing another `Ptr`.
282        ///
283        /// Since `self` is borrowed mutably, this prevents any methods from
284        /// being called on `self` as long as the returned `Ptr` exists.
285        #[doc(hidden)]
286        #[inline]
287        #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
288        pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
289        where
290            'a: 'b,
291        {
292            // SAFETY: The following all hold by invariant on `self`, and thus
293            // hold of `ptr = self.as_inner()`:
294            // 0. SEE BELOW.
295            // 1. `ptr` conforms to the alignment invariant of
296            //    [`I::Alignment`](invariant::Alignment).
297            // 2. `ptr` conforms to the validity invariant of
298            //    [`I::Validity`](invariant::Validity). `self` and the returned
299            //    `Ptr` permit the same bit values in their referents since they
300            //    have the same referent type (`T`) and the same validity
301            //    (`I::Validity`). Thus, regardless of what mutation is
302            //    permitted (`Exclusive` aliasing or `Shared`-aliased interior
303            //    mutation), neither can be used to write a value to the
304            //    referent which violates the other's validity invariant.
305            //
306            // For aliasing (0 above), since `I::Aliasing: Reference`,
307            // there are two cases for `I::Aliasing`:
308            // - For `invariant::Shared`: `'a` outlives `'b`, and so the
309            //   returned `Ptr` does not permit accessing the referent any
310            //   longer than is possible via `self`. For shared aliasing, it is
311            //   sound for multiple `Ptr`s to exist simultaneously which
312            //   reference the same memory, so creating a new one is not
313            //   problematic.
314            // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
315            //   return a `Ptr` with lifetime `'b`, `self` is inaccessible to
316            //   the caller for the lifetime `'b` - in other words, `self` is
317            //   inaccessible to the caller as long as the returned `Ptr`
318            //   exists. Since `self` is an exclusive `Ptr`, no other live
319            //   references or `Ptr`s may exist which refer to the same memory
320            //   while `self` is live. Thus, as long as the returned `Ptr`
321            //   exists, no other references or `Ptr`s which refer to the same
322            //   memory may be live.
323            unsafe { Ptr::from_inner(self.as_inner()) }
324        }
325
326        /// Reborrows `self` as shared, producing another `Ptr` with `Shared`
327        /// aliasing.
328        ///
329        /// Since `self` is borrowed mutably, this prevents any methods from
330        /// being called on `self` as long as the returned `Ptr` exists.
331        #[doc(hidden)]
332        #[inline]
333        #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
334        pub fn reborrow_shared<'b>(&'b mut self) -> Ptr<'b, T, (Shared, I::Alignment, I::Validity)>
335        where
336            'a: 'b,
337        {
338            // SAFETY: The following all hold by invariant on `self`, and thus
339            // hold of `ptr = self.as_inner()`:
340            // 0. SEE BELOW.
341            // 1. `ptr` conforms to the alignment invariant of
342            //    [`I::Alignment`](invariant::Alignment).
343            // 2. `ptr` conforms to the validity invariant of
344            //    [`I::Validity`](invariant::Validity). `self` and the returned
345            //    `Ptr` permit the same bit values in their referents since they
346            //    have the same referent type (`T`) and the same validity
347            //    (`I::Validity`). Thus, regardless of what mutation is
348            //    permitted (`Exclusive` aliasing or `Shared`-aliased interior
349            //    mutation), neither can be used to write a value to the
350            //    referent which violates the other's validity invariant.
351            //
352            // For aliasing (0 above), since `I::Aliasing: Reference`,
353            // there are two cases for `I::Aliasing`:
354            // - For `invariant::Shared`: `'a` outlives `'b`, and so the
355            //   returned `Ptr` does not permit accessing the referent any
356            //   longer than is possible via `self`. For shared aliasing, it is
357            //   sound for multiple `Ptr`s to exist simultaneously which
358            //   reference the same memory, so creating a new one is not
359            //   problematic.
360            // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
361            //   return a `Ptr` with lifetime `'b`, `self` is inaccessible to
362            //   the caller for the lifetime `'b` - in other words, `self` is
363            //   inaccessible to the caller as long as the returned `Ptr`
364            //   exists. Since `self` is an exclusive `Ptr`, no other live
365            //   references or `Ptr`s may exist which refer to the same memory
366            //   while `self` is live. Thus, as long as the returned `Ptr`
367            //   exists, no other references or `Ptr`s which refer to the same
368            //   memory may be live.
369            unsafe { Ptr::from_inner(self.as_inner()) }
370        }
371    }
372
373    /// `Ptr<'a, T>` → `&'a mut T`
374    impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
375    where
376        T: 'a + ?Sized,
377    {
378        /// Converts `self` to a mutable reference.
379        #[allow(clippy::wrong_self_convention)]
380        pub(crate) fn as_mut(self) -> &'a mut T {
381            let mut raw = self.as_inner().as_non_null();
382            // SAFETY: `self` satisfies the `Aligned` invariant, so we know that
383            // `raw` is validly-aligned for `T`.
384            #[cfg(miri)]
385            unsafe {
386                crate::util::miri_promise_symbolic_alignment(
387                    raw.as_ptr().cast(),
388                    core::mem::align_of_val_raw(raw.as_ptr()),
389                );
390            }
391            // SAFETY: This invocation of `NonNull::as_mut` satisfies its
392            // documented safety preconditions:
393            //
394            // 1. The pointer is properly aligned. This is ensured by-contract
395            //    on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
396            //
397            // 2. If the pointer's referent is not zero-sized, then the pointer
398            //    must be “dereferenceable” in the sense defined in the module
399            //    documentation; i.e.:
400            //
401            //    > The memory range of the given size starting at the pointer
402            //    > must all be within the bounds of a single allocated object.
403            //    > [2]
404            //
405            //   This is ensured by contract on all `PtrInner`s.
406            //
407            // 3. The pointer must point to a validly-initialized instance of
408            //    `T`. This is ensured by-contract on `Ptr`, because the
409            //    validity invariant is `Valid`.
410            //
411            // 4. You must enforce Rust’s aliasing rules. This is ensured by
412            //    contract on `Ptr`, because the `ALIASING_INVARIANT` is
413            //    `Exclusive`.
414            //
415            // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
416            // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
417            unsafe { raw.as_mut() }
418        }
419    }
420
421    /// `Ptr<'a, T>` → `Ptr<'a, U>`
422    impl<'a, T: ?Sized, I> Ptr<'a, T, I>
423    where
424        I: Invariants,
425    {
426        #[must_use]
427        #[inline(always)]
428        pub fn transmute<U, V, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
429        where
430            V: Validity,
431            U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, <U as SizeEq<T>>::CastFrom, R>
432                + SizeEq<T>
433                + ?Sized,
434        {
435            self.transmute_with::<U, V, <U as SizeEq<T>>::CastFrom, R>()
436        }
437
438        pub(crate) fn transmute_with<U, V, C, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
439        where
440            V: Validity,
441            U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, C, R> + ?Sized,
442            C: CastExact<T, U>,
443        {
444            // SAFETY:
445            // - By `C: CastExact`, `C` preserves referent address, and so we
446            //   don't need to consider projections in the following safety
447            //   arguments.
448            // - If aliasing is `Shared`, then by `U: TransmuteFromPtr<T>`, at
449            //   least one of the following holds:
450            //   - `T: Immutable` and `U: Immutable`, in which case it is
451            //     trivially sound for shared code to operate on a `&T` and `&U`
452            //     at the same time, as neither can perform interior mutation
453            //   - It is directly guaranteed that it is sound for shared code to
454            //     operate on these references simultaneously
455            // - By `U: TransmuteFromPtr<T, I::Aliasing, I::Validity, C, V>`, it
456            //   is sound to perform this transmute using `C`.
457            unsafe { self.project_transmute_unchecked::<_, _, C>() }
458        }
459
460        #[doc(hidden)]
461        #[inline(always)]
462        #[must_use]
463        pub fn recall_validity<V, R>(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)>
464        where
465            V: Validity,
466            T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, IdCast, R>,
467        {
468            let ptr = self.transmute_with::<T, V, IdCast, R>();
469            // SAFETY: `self` and `ptr` have the same address and referent type.
470            // Therefore, if `self` satisfies `I::Alignment`, then so does
471            // `ptr`.
472            unsafe { ptr.assume_alignment::<I::Alignment>() }
473        }
474
475        /// Projects and/or transmutes to a different (unsized) referent type
476        /// without checking interior mutability.
477        ///
478        /// Callers should prefer [`cast`] or [`project`] where possible.
479        ///
480        /// [`cast`]: Ptr::cast
481        /// [`project`]: Ptr::project
482        ///
483        /// # Safety
484        ///
485        /// The caller promises that:
486        /// - If `I::Aliasing` is [`Shared`], it must not be possible for safe
487        ///   code, operating on a `&T` and `&U`, with the referents of `self`
488        ///   and `self.project_transmute_unchecked()`, respectively, to cause
489        ///   undefined behavior.
490        /// - It is sound to project and/or transmute a pointer of type `T` with
491        ///   aliasing `I::Aliasing` and validity `I::Validity` to a pointer of
492        ///   type `U` with aliasing `I::Aliasing` and validity `V`. This is a
493        ///   subtle soundness requirement that is a function of `T`, `U`,
494        ///   `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the
495        ///   presence, absence, or specific location of `UnsafeCell`s in `T`
496        ///   and/or `U`, and on whether interior mutation is ever permitted via
497        ///   those `UnsafeCell`s. See [`Validity`] for more details.
498        #[doc(hidden)]
499        #[inline(always)]
500        #[must_use]
501        pub unsafe fn project_transmute_unchecked<U: ?Sized, V, P>(
502            self,
503        ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
504        where
505            V: Validity,
506            P: crate::pointer::cast::Project<T, U>,
507        {
508            let ptr = self.as_inner().project::<_, P>();
509
510            // SAFETY:
511            //
512            // The following safety arguments rely on the fact that `P: Project`
513            // guarantees that `P` is a referent-preserving or -shrinking
514            // projection. Thus, `ptr` addresses a subset of the bytes of
515            // `*self`, and so certain properties that hold of `*self` also hold
516            // of `*ptr`.
517            //
518            // 0. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
519            //    - `Exclusive`: `self` is the only `Ptr` or reference which is
520            //      permitted to read or modify the referent for the lifetime
521            //      `'a`. Since we consume `self` by value, the returned pointer
522            //      remains the only `Ptr` or reference which is permitted to
523            //      read or modify the referent for the lifetime `'a`.
524            //    - `Shared`: Since `self` has aliasing `Shared`, we know that
525            //      no other code may mutate the referent during the lifetime
526            //      `'a`, except via `UnsafeCell`s, and except as permitted by
527            //      `T`'s library safety invariants. The caller promises that
528            //      any safe operations which can be permitted on a `&T` and a
529            //      `&U` simultaneously must be sound. Thus, no operations on a
530            //      `&U` could violate `&T`'s library safety invariants, and
531            //      vice-versa. Since any mutation via shared references outside
532            //      of `UnsafeCell`s is unsound, this must be impossible using
533            //      `&T` and `&U`.
534            //    - `Inaccessible`: There are no restrictions we need to uphold.
535            // 1. `ptr` trivially satisfies the alignment invariant `Unaligned`.
536            // 2. The caller promises that the returned pointer satisfies the
537            //    validity invariant `V` with respect to its referent type, `U`.
538            unsafe { Ptr::from_inner(ptr) }
539        }
540    }
541
542    /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
543    impl<'a, T, I> Ptr<'a, T, I>
544    where
545        I: Invariants,
546    {
547        /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
548        /// `Unalign<T>`.
549        pub(crate) fn into_unalign(
550            self,
551        ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
552            // FIXME(#1359): This should be a `transmute_with` call.
553            // Unfortunately, to avoid blanket impl conflicts, we only implement
554            // `TransmuteFrom<T>` for `Unalign<T>` (and vice versa) specifically
555            // for `Valid` validity, not for all validity types.
556
557            // SAFETY:
558            // - By `CastSized: Cast`, `CastSized` preserves referent address,
559            //   and so we don't need to consider projections in the following
560            //   safety arguments.
561            // - Since `Unalign<T>` has the same layout as `T`, the returned
562            //   pointer refers to `UnsafeCell`s at the same locations as
563            //   `self`.
564            // - `Unalign<T>` promises to have the same bit validity as `T`. By
565            //   invariant on `Validity`, the set of bit patterns allowed in the
566            //   referent of a `Ptr<X, (_, _, V)>` is only a function of the
567            //   validity of `X` and of `V`. Thus, the set of bit patterns
568            //   allowed in the referent of a `Ptr<T, (_, _, I::Validity)>` is
569            //   the same as the set of bit patterns allowed in the referent of
570            //   a `Ptr<Unalign<T>, (_, _, I::Validity)>`. As a result, `self`
571            //   and the returned `Ptr` permit the same set of bit patterns in
572            //   their referents, and so neither can be used to violate the
573            //   validity of the other.
574            let ptr = unsafe { self.project_transmute_unchecked::<_, _, CastSized>() };
575            ptr.bikeshed_recall_aligned()
576        }
577    }
578
579    impl<'a, T, I> Ptr<'a, T, I>
580    where
581        T: ?Sized,
582        I: Invariants<Validity = Valid>,
583        I::Aliasing: Reference,
584    {
585        /// Reads the referent.
586        #[must_use]
587        #[inline]
588        pub fn read_unaligned<R>(self) -> T
589        where
590            T: Copy,
591            T: Read<I::Aliasing, R>,
592        {
593            (*self.into_unalign().as_ref()).into_inner()
594        }
595
596        /// Views the value as an aligned reference.
597        ///
598        /// This is only available if `T` is [`Unaligned`].
599        #[must_use]
600        #[inline]
601        pub fn unaligned_as_ref(self) -> &'a T
602        where
603            T: crate::Unaligned,
604        {
605            self.bikeshed_recall_aligned().as_ref()
606        }
607    }
608}
609
610/// State transitions between invariants.
611mod _transitions {
612    use super::*;
613    use crate::{
614        pointer::{cast::IdCast, transmute::TryTransmuteFromPtr},
615        ReadOnly,
616    };
617
618    impl<'a, T, I> Ptr<'a, T, I>
619    where
620        T: 'a + ?Sized,
621        I: Invariants,
622    {
623        /// Assumes that `self` satisfies the invariants `H`.
624        ///
625        /// # Safety
626        ///
627        /// The caller promises that `self` satisfies the invariants `H`.
628        unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
629            // SAFETY: The caller has promised to satisfy all parameterized
630            // invariants of `Ptr`. `Ptr`'s other invariants are satisfied
631            // by-contract by the source `Ptr`.
632            unsafe { Ptr::from_inner(self.as_inner()) }
633        }
634
635        /// Helps the type system unify two distinct invariant types which are
636        /// actually the same.
637        pub(crate) fn unify_invariants<
638            H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
639        >(
640            self,
641        ) -> Ptr<'a, T, H> {
642            // SAFETY: The associated type bounds on `H` ensure that the
643            // invariants are unchanged.
644            unsafe { self.assume_invariants::<H>() }
645        }
646
647        /// Assumes that `self`'s referent is validly-aligned for `T` if
648        /// required by `A`.
649        ///
650        /// # Safety
651        ///
652        /// The caller promises that `self`'s referent conforms to the alignment
653        /// invariant of `T` if required by `A`.
654        #[inline]
655        pub(crate) unsafe fn assume_alignment<A: Alignment>(
656            self,
657        ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
658            // SAFETY: The caller promises that `self`'s referent is
659            // well-aligned for `T` if required by `A` .
660            unsafe { self.assume_invariants() }
661        }
662
663        /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
664        /// on success.
665        pub(crate) fn try_into_aligned(
666            self,
667        ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
668        where
669            T: Sized,
670        {
671            if let Err(err) =
672                crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null())
673            {
674                return Err(err.with_src(self));
675            }
676
677            // SAFETY: We just checked the alignment.
678            Ok(unsafe { self.assume_alignment::<Aligned>() })
679        }
680
681        /// Recalls that `self`'s referent is validly-aligned for `T`.
682        #[inline]
683        // FIXME(#859): Reconsider the name of this method before making it
684        // public.
685        pub(crate) fn bikeshed_recall_aligned(
686            self,
687        ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
688        where
689            T: crate::Unaligned,
690        {
691            // SAFETY: The bound `T: Unaligned` ensures that `T` has no
692            // non-trivial alignment requirement.
693            unsafe { self.assume_alignment::<Aligned>() }
694        }
695
696        /// Assumes that `self`'s referent conforms to the validity requirement
697        /// of `V`.
698        ///
699        /// # Safety
700        ///
701        /// The caller promises that `self`'s referent conforms to the validity
702        /// requirement of `V`.
703        #[doc(hidden)]
704        #[must_use]
705        #[inline]
706        pub unsafe fn assume_validity<V: Validity>(
707            self,
708        ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
709            // SAFETY: The caller promises that `self`'s referent conforms to
710            // the validity requirement of `V`.
711            unsafe { self.assume_invariants() }
712        }
713
714        /// A shorthand for `self.assume_validity<invariant::Initialized>()`.
715        ///
716        /// # Safety
717        ///
718        /// The caller promises to uphold the safety preconditions of
719        /// `self.assume_validity<invariant::Initialized>()`.
720        #[doc(hidden)]
721        #[must_use]
722        #[inline]
723        pub unsafe fn assume_initialized(
724            self,
725        ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
726            // SAFETY: The caller has promised to uphold the safety
727            // preconditions.
728            unsafe { self.assume_validity::<Initialized>() }
729        }
730
731        /// A shorthand for `self.assume_validity<Valid>()`.
732        ///
733        /// # Safety
734        ///
735        /// The caller promises to uphold the safety preconditions of
736        /// `self.assume_validity<Valid>()`.
737        #[doc(hidden)]
738        #[must_use]
739        #[inline]
740        pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
741            // SAFETY: The caller has promised to uphold the safety
742            // preconditions.
743            unsafe { self.assume_validity::<Valid>() }
744        }
745
746        /// Checks that `self`'s referent is validly initialized for `T`,
747        /// returning a `Ptr` with `Valid` on success.
748        ///
749        /// # Panics
750        ///
751        /// This method will panic if
752        /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
753        ///
754        /// # Safety
755        ///
756        /// On error, unsafe code may rely on this method's returned
757        /// `ValidityError` containing `self`.
758        #[inline]
759        pub(crate) fn try_into_valid<R, S>(
760            mut self,
761        ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
762        where
763            T: TryFromBytes
764                + Read<I::Aliasing, R>
765                + TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid, IdCast, S>,
766            ReadOnly<T>: Read<I::Aliasing, R>,
767            I::Aliasing: Reference,
768            I: Invariants<Validity = Initialized>,
769        {
770            // This call may panic. If that happens, it doesn't cause any
771            // soundness issues, as we have not generated any invalid state
772            // which we need to fix before returning.
773            if T::is_bit_valid(self.reborrow().transmute::<_, _, _>().reborrow_shared()) {
774                // SAFETY: If `T::is_bit_valid`, code may assume that `self`
775                // contains a bit-valid instance of `T`. By `T:
776                // TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid>`, so
777                // long as `self`'s referent conforms to the `Valid` validity
778                // for `T` (which we just confirmed), then this transmute is
779                // sound.
780                Ok(unsafe { self.assume_valid() })
781            } else {
782                Err(ValidityError::new(self))
783            }
784        }
785
786        /// Forgets that `self`'s referent is validly-aligned for `T`.
787        #[doc(hidden)]
788        #[must_use]
789        #[inline]
790        pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> {
791            // SAFETY: `Unaligned` is less restrictive than `Aligned`.
792            unsafe { self.assume_invariants() }
793        }
794    }
795}
796
797/// Casts of the referent type.
798pub(crate) use _casts::TryWithError;
799mod _casts {
800    use core::cell::UnsafeCell;
801
802    use super::*;
803    use crate::{
804        pointer::cast::{AsBytesCast, Cast},
805        HasTag, ProjectField,
806    };
807
808    impl<'a, T, I> Ptr<'a, T, I>
809    where
810        T: 'a + ?Sized,
811        I: Invariants,
812    {
813        /// Casts to a different referent type without checking interior
814        /// mutability.
815        ///
816        /// Callers should prefer [`cast`][Ptr::cast] where possible.
817        ///
818        /// # Safety
819        ///
820        /// If `I::Aliasing` is [`Shared`], it must not be possible for safe
821        /// code, operating on a `&T` and `&U` with the same referent
822        /// simultaneously, to cause undefined behavior.
823        #[doc(hidden)]
824        #[inline(always)]
825        #[must_use]
826        pub unsafe fn cast_unchecked<U, C: Cast<T, U>>(
827            self,
828        ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
829        where
830            U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,
831        {
832            // SAFETY:
833            // - By `C: Cast`, `C` preserves the address of the referent.
834            // - If `I::Aliasing` is [`Shared`], the caller promises that it
835            //   is not possible for safe code, operating on a `&T` and `&U`
836            //   with the same referent simultaneously, to cause undefined
837            //   behavior.
838            // - By `U: CastableFrom<T, I::Validity, I::Validity>`,
839            //   `I::Validity` is either `Uninit` or `Initialized`. In both
840            //   cases, the bit validity `I::Validity` has the same semantics
841            //   regardless of referent type. In other words, the set of allowed
842            //   referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U,
843            //   (_, _, I::Validity)>` are identical. As a consequence, neither
844            //   `self` nor the returned `Ptr` can be used to write values which
845            //   are invalid for the other.
846            unsafe { self.project_transmute_unchecked::<_, _, C>() }
847        }
848
849        /// Casts to a different referent type.
850        #[doc(hidden)]
851        #[inline(always)]
852        #[must_use]
853        pub fn cast<U, C, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
854        where
855            T: MutationCompatible<U, I::Aliasing, I::Validity, I::Validity, R>,
856            U: 'a + ?Sized + CastableFrom<T, I::Validity, I::Validity>,
857            C: Cast<T, U>,
858        {
859            // SAFETY: Because `T: MutationCompatible<U, I::Aliasing, R>`, one
860            // of the following holds:
861            // - `T: Read<I::Aliasing>` and `U: Read<I::Aliasing>`, in which
862            //   case one of the following holds:
863            //   - `I::Aliasing` is `Exclusive`
864            //   - `T` and `U` are both `Immutable`
865            // - It is sound for safe code to operate on `&T` and `&U` with the
866            //   same referent simultaneously.
867            unsafe { self.cast_unchecked::<_, C>() }
868        }
869
870        #[inline(always)]
871        pub fn project<F, const VARIANT_ID: i128, const FIELD_ID: i128>(
872            mut self,
873        ) -> Result<Ptr<'a, T::Type, T::Invariants>, T::Error>
874        where
875            T: ProjectField<F, I, VARIANT_ID, FIELD_ID>,
876            I::Aliasing: Reference,
877        {
878            use crate::pointer::cast::Projection;
879            match T::is_projectable(self.reborrow().project_tag()) {
880                Ok(()) => {
881                    let inner = self.as_inner();
882                    let projected = inner.project::<_, Projection<F, VARIANT_ID, FIELD_ID>>();
883                    // SAFETY: By `T: ProjectField<F, I, VARIANT_ID, FIELD_ID>`,
884                    // for `self: Ptr<'_, T, I>` such that `T::is_projectable`
885                    // (which we've verified in this match arm),
886                    // `T::project(self.as_inner())` conforms to
887                    // `T::Invariants`. The `projected` pointer satisfies these
888                    // invariants because it is produced by way of an
889                    // abstraction that is equivalent to
890                    // `T::project(ptr.as_inner())`: by invariant on
891                    // `PtrInner::project`, `projected` is guaranteed to address
892                    // the subset of the bytes of `inner`'s referent addressed
893                    // by `Projection::project(inner)`, and by invariant on
894                    // `Projection`, `Projection::project` is implemented by
895                    // delegating to an implementation of `HasField::project`.
896                    Ok(unsafe { Ptr::from_inner(projected) })
897                }
898                Err(err) => Err(err),
899            }
900        }
901
902        #[must_use]
903        #[inline(always)]
904        pub(crate) fn project_tag(self) -> Ptr<'a, T::Tag, I>
905        where
906            T: HasTag,
907        {
908            // SAFETY: By invariant on `Self::ProjectToTag`, this is a sound
909            // projection.
910            let tag = unsafe { self.project_transmute_unchecked::<_, _, T::ProjectToTag>() };
911            // SAFETY: By invariant on `Self::ProjectToTag`, the projected
912            // pointer has the same alignment as `ptr`.
913            let tag = unsafe { tag.assume_alignment() };
914            tag.unify_invariants()
915        }
916
917        /// Attempts to transform the pointer, restoring the original on
918        /// failure.
919        ///
920        /// # Safety
921        ///
922        /// If `I::Aliasing != Shared`, then if `f` returns `Err(err)`, no copy
923        /// of `f`'s argument must exist outside of `err`.
924        #[inline(always)]
925        pub(crate) unsafe fn try_with_unchecked<U, J, E, F>(
926            self,
927            f: F,
928        ) -> Result<Ptr<'a, U, J>, E::Mapped>
929        where
930            U: 'a + ?Sized,
931            J: Invariants<Aliasing = I::Aliasing>,
932            E: TryWithError<Self>,
933            F: FnOnce(Ptr<'a, T, I>) -> Result<Ptr<'a, U, J>, E>,
934        {
935            let old_inner = self.as_inner();
936            #[rustfmt::skip]
937            let res = f(self).map_err(#[inline(always)] move |err: E| {
938                err.map(#[inline(always)] |src| {
939                    drop(src);
940
941                    // SAFETY:
942                    // 0. Aliasing is either `Shared` or `Exclusive`:
943                    //    - If aliasing is `Shared`, then it cannot violate
944                    //      aliasing make another copy of this pointer (in fact,
945                    //      using `I::Aliasing = Shared`, we could have just
946                    //      cloned `self`).
947                    //    - If aliasing is `Exclusive`, then `f` is not allowed
948                    //      to make another copy of `self`. In `map_err`, we are
949                    //      consuming the only value in the returned `Result`.
950                    //      By invariant on `E: TryWithError<Self>`, that `err:
951                    //      E` only contains a single `Self` and no other
952                    //      non-ZST fields which could be `Ptr`s or references
953                    //      to `self`'s referent. By the same invariant, `map`
954                    //      consumes this single `Self` and passes it to this
955                    //      closure. Since `self` was, by invariant on
956                    //      `Exclusive`, the only `Ptr` or reference live for
957                    //      `'a` with this referent, and since we `drop(src)`
958                    //      above, there are no copies left, and so we are
959                    //      creating the only copy.
960                    // 1. `self` conforms to `I::Aliasing` by invariant on
961                    //    `Ptr`, and `old_inner` has the same address, so it
962                    //    does too.
963                    // 2. `f` could not have violated `self`'s validity without
964                    //    itself being unsound. Assuming that `f` is sound, the
965                    //    referent of `self` is still valid for `T`.
966                    unsafe { Ptr::from_inner(old_inner) }
967                })
968            });
969            res
970        }
971
972        /// Attempts to transform the pointer, restoring the original on
973        /// failure.
974        pub(crate) fn try_with<U, J, E, F>(self, f: F) -> Result<Ptr<'a, U, J>, E::Mapped>
975        where
976            U: 'a + ?Sized,
977            J: Invariants<Aliasing = I::Aliasing>,
978            E: TryWithError<Self>,
979            F: FnOnce(Ptr<'a, T, I>) -> Result<Ptr<'a, U, J>, E>,
980            I: Invariants<Aliasing = Shared>,
981        {
982            // SAFETY: `I::Aliasing = Shared`, so the safety condition does not
983            // apply.
984            unsafe { self.try_with_unchecked(f) }
985        }
986    }
987
988    /// # Safety
989    ///
990    /// `Self` only contains a single `Self::Inner`, and `Self::Mapped` only
991    /// contains a single `MappedInner`. Other than that, `Self` and
992    /// `Self::Mapped` contain no non-ZST fields.
993    ///
994    /// `map` must pass ownership of `self`'s sole `Self::Inner` to `f`.
995    pub(crate) unsafe trait TryWithError<MappedInner> {
996        type Inner;
997        type Mapped;
998        fn map<F: FnOnce(Self::Inner) -> MappedInner>(self, f: F) -> Self::Mapped;
999    }
1000
1001    impl<'a, T, I> Ptr<'a, T, I>
1002    where
1003        T: 'a + KnownLayout + ?Sized,
1004        I: Invariants,
1005    {
1006        /// Casts this pointer-to-initialized into a pointer-to-bytes.
1007        #[allow(clippy::wrong_self_convention)]
1008        #[must_use]
1009        #[inline]
1010        pub fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
1011        where
1012            [u8]: TransmuteFromPtr<T, I::Aliasing, I::Validity, Valid, AsBytesCast, R>,
1013        {
1014            self.transmute_with::<[u8], Valid, AsBytesCast, _>().bikeshed_recall_aligned()
1015        }
1016    }
1017
1018    impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
1019    where
1020        T: 'a,
1021        I: Invariants,
1022    {
1023        /// Casts this pointer-to-array into a slice.
1024        #[allow(clippy::wrong_self_convention)]
1025        pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
1026            let slice = self.as_inner().as_slice();
1027            // SAFETY: Note that, by post-condition on `PtrInner::as_slice`,
1028            // `slice` refers to the same byte range as `self.as_inner()`.
1029            //
1030            // 0. Thus, `slice` conforms to the aliasing invariant of
1031            //    `I::Aliasing` because `self` does.
1032            // 1. By the above lemma, `slice` conforms to the alignment
1033            //    invariant of `I::Alignment` because `self` does.
1034            // 2. Since `[T; N]` and `[T]` have the same bit validity [1][2],
1035            //    and since `self` and the returned `Ptr` have the same validity
1036            //    invariant, neither `self` nor the returned `Ptr` can be used
1037            //    to write a value to the referent which violates the other's
1038            //    validity invariant.
1039            //
1040            // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout:
1041            //
1042            //   An array of `[T; N]` has a size of `size_of::<T>() * N` and the
1043            //   same alignment of `T`. Arrays are laid out so that the
1044            //   zero-based `nth` element of the array is offset from the start
1045            //   of the array by `n * size_of::<T>()` bytes.
1046            //
1047            //   ...
1048            //
1049            //   Slices have the same layout as the section of the array they
1050            //   slice.
1051            //
1052            // [2] Per https://doc.rust-lang.org/1.81.0/reference/types/array.html#array-types:
1053            //
1054            //   All elements of arrays are always initialized
1055            unsafe { Ptr::from_inner(slice) }
1056        }
1057    }
1058
1059    /// For caller convenience, these methods are generic over alignment
1060    /// invariant. In practice, the referent is always well-aligned, because the
1061    /// alignment of `[u8]` is 1.
1062    impl<'a, I> Ptr<'a, [u8], I>
1063    where
1064        I: Invariants<Validity = Valid>,
1065    {
1066        /// Attempts to cast `self` to a `U` using the given cast type.
1067        ///
1068        /// If `U` is a slice DST and pointer metadata (`meta`) is provided,
1069        /// then the cast will only succeed if it would produce an object with
1070        /// the given metadata.
1071        ///
1072        /// Returns `None` if the resulting `U` would be invalidly-aligned, if
1073        /// no `U` can fit in `self`, or if the provided pointer metadata
1074        /// describes an invalid instance of `U`. On success, returns a pointer
1075        /// to the largest-possible `U` which fits in `self`.
1076        ///
1077        /// # Safety
1078        ///
1079        /// The caller may assume that this implementation is correct, and may
1080        /// rely on that assumption for the soundness of their code. In
1081        /// particular, the caller may assume that, if `try_cast_into` returns
1082        /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
1083        /// non-overlapping byte ranges within `self`, and that `ptr` and
1084        /// `remainder` entirely cover `self`. Finally:
1085        /// - If this is a prefix cast, `ptr` has the same address as `self`.
1086        /// - If this is a suffix cast, `remainder` has the same address as
1087        ///   `self`.
1088        #[inline(always)]
1089        pub(crate) fn try_cast_into<U, R>(
1090            self,
1091            cast_type: CastType,
1092            meta: Option<U::PointerMetadata>,
1093        ) -> Result<
1094            (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
1095            CastError<Self, U>,
1096        >
1097        where
1098            I::Aliasing: Reference,
1099            U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1100        {
1101            let (inner, remainder) =
1102                self.as_inner().try_cast_into(cast_type, meta).map_err(|err| {
1103                    err.map_src(|inner|
1104                    // SAFETY: `PtrInner::try_cast_into` promises to return its
1105                    // original argument on error, which was originally produced
1106                    // by `self.as_inner()`, which is guaranteed to satisfy
1107                    // `Ptr`'s invariants.
1108                    unsafe { Ptr::from_inner(inner) })
1109                })?;
1110
1111            // SAFETY:
1112            // 0. Since `U: Read<I::Aliasing, _>`, either:
1113            //    - `I::Aliasing` is `Exclusive`, in which case both `src` and
1114            //      `ptr` conform to `Exclusive`
1115            //    - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already
1116            //      know that `[u8]: Immutable`). In this case, neither `U` nor
1117            //      `[u8]` permit mutation, and so `Shared` aliasing is
1118            //      satisfied.
1119            // 1. `ptr` conforms to the alignment invariant of `Aligned` because
1120            //    it is derived from `try_cast_into`, which promises that the
1121            //    object described by `target` is validly aligned for `U`.
1122            // 2. By trait bound, `self` - and thus `target` - is a bit-valid
1123            //    `[u8]`. `Ptr<[u8], (_, _, Valid)>` and `Ptr<_, (_, _,
1124            //    Initialized)>` have the same bit validity, and so neither
1125            //    `self` nor `res` can be used to write a value to the referent
1126            //    which violates the other's validity invariant.
1127            let res = unsafe { Ptr::from_inner(inner) };
1128
1129            // SAFETY:
1130            // 0. `self` and `remainder` both have the type `[u8]`. Thus, they
1131            //    have `UnsafeCell`s at the same locations. Type casting does
1132            //    not affect aliasing.
1133            // 1. `[u8]` has no alignment requirement.
1134            // 2. `self` has validity `Valid` and has type `[u8]`. Since
1135            //    `remainder` references a subset of `self`'s referent, it is
1136            //    also a bit-valid `[u8]`. Thus, neither `self` nor `remainder`
1137            //    can be used to write a value to the referent which violates
1138            //    the other's validity invariant.
1139            let remainder = unsafe { Ptr::from_inner(remainder) };
1140
1141            Ok((res, remainder))
1142        }
1143
1144        /// Attempts to cast `self` into a `U`, failing if all of the bytes of
1145        /// `self` cannot be treated as a `U`.
1146        ///
1147        /// In particular, this method fails if `self` is not validly-aligned
1148        /// for `U` or if `self`'s size is not a valid size for `U`.
1149        ///
1150        /// # Safety
1151        ///
1152        /// On success, the caller may assume that the returned pointer
1153        /// references the same byte range as `self`.
1154        #[allow(unused)]
1155        #[inline(always)]
1156        pub(crate) fn try_cast_into_no_leftover<U, R>(
1157            self,
1158            meta: Option<U::PointerMetadata>,
1159        ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
1160        where
1161            I::Aliasing: Reference,
1162            U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1163            [u8]: Read<I::Aliasing, R>,
1164        {
1165            // SAFETY: The provided closure returns the only copy of `slf`.
1166            unsafe {
1167                self.try_with_unchecked(|slf| match slf.try_cast_into(CastType::Prefix, meta) {
1168                    Ok((slf, remainder)) => {
1169                        if remainder.len() == 0 {
1170                            Ok(slf)
1171                        } else {
1172                            Err(CastError::Size(SizeError::<_, U>::new(())))
1173                        }
1174                    }
1175                    Err(err) => Err(err.map_src(|_slf| ())),
1176                })
1177            }
1178        }
1179    }
1180
1181    impl<'a, T, I> Ptr<'a, UnsafeCell<T>, I>
1182    where
1183        T: 'a + ?Sized,
1184        I: Invariants<Aliasing = Exclusive>,
1185    {
1186        /// Converts this `Ptr` into a pointer to the underlying data.
1187        ///
1188        /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1189        /// guarantees that we possess the only reference.
1190        ///
1191        /// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
1192        ///
1193        /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
1194        #[must_use]
1195        #[inline(always)]
1196        pub fn get_mut(self) -> Ptr<'a, T, I> {
1197            // SAFETY: As described below, `UnsafeCell<T>` has the same size
1198            // as `T: ?Sized` (same static size or same DST layout). Thus,
1199            // `*const UnsafeCell<T> as *const T` is a size-preserving cast.
1200            define_cast!(unsafe { Cast<T: ?Sized> = UnsafeCell<T> => T });
1201
1202            // SAFETY:
1203            // - Aliasing is `Exclusive`, and so we are not required to promise
1204            //   anything about the locations of `UnsafeCell`s.
1205            // - `UnsafeCell<T>` has the same bit validity as `T` [1].
1206            //   Technically the term "representation" doesn't guarantee this,
1207            //   but the subsequent sentence in the documentation makes it clear
1208            //   that this is the intention.
1209            //
1210            //   By invariant on `Validity`, since `T` and `UnsafeCell<T>` have
1211            //   the same bit validity, then the set of values which may appear
1212            //   in the referent of a `Ptr<T, (_, _, V)>` is the same as the set
1213            //   which may appear in the referent of a `Ptr<UnsafeCell<T>, (_,
1214            //   _, V)>`. Thus, neither `self` nor `ptr` may be used to write a
1215            //   value to the referent which would violate the other's validity
1216            //   invariant.
1217            //
1218            // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1219            //
1220            //   `UnsafeCell<T>` has the same in-memory representation as its
1221            //   inner type `T`. A consequence of this guarantee is that it is
1222            //   possible to convert between `T` and `UnsafeCell<T>`.
1223            let ptr = unsafe { self.project_transmute_unchecked::<_, _, Cast>() };
1224
1225            // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
1226            // and so if `self` is guaranteed to be aligned, then so is the
1227            // returned `Ptr`.
1228            //
1229            // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1230            //
1231            //   `UnsafeCell<T>` has the same in-memory representation as
1232            //   its inner type `T`. A consequence of this guarantee is that
1233            //   it is possible to convert between `T` and `UnsafeCell<T>`.
1234            let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
1235            ptr.unify_invariants()
1236        }
1237    }
1238}
1239
1240/// Projections through the referent.
1241mod _project {
1242    use super::*;
1243
1244    impl<'a, T, I> Ptr<'a, [T], I>
1245    where
1246        T: 'a,
1247        I: Invariants,
1248        I::Aliasing: Reference,
1249    {
1250        /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
1251        pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
1252            // SAFETY:
1253            // 0. `elem` conforms to the aliasing invariant of `I::Aliasing`
1254            //    because projection does not impact the aliasing invariant.
1255            // 1. `elem`, conditionally, conforms to the validity invariant of
1256            //    `I::Alignment`. If `elem` is projected from data well-aligned
1257            //    for `[T]`, `elem` will be valid for `T`.
1258            // 2. `elem` conforms to the validity invariant of `I::Validity`.
1259            //    Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout:
1260            //
1261            //      Slices have the same layout as the section of the array they
1262            //      slice.
1263            //
1264            //    Arrays are laid out so that the zero-based `nth` element of
1265            //    the array is offset from the start of the array by `n *
1266            //    size_of::<T>()` bytes. Thus, `elem` addresses a valid `T`
1267            //    within the slice. Since `self` satisfies `I::Validity`, `elem`
1268            //    also satisfies `I::Validity`.
1269            self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) })
1270        }
1271    }
1272
1273    #[allow(clippy::needless_lifetimes)]
1274    impl<'a, T, I> Ptr<'a, T, I>
1275    where
1276        T: 'a + ?Sized + KnownLayout<PointerMetadata = usize>,
1277        I: Invariants,
1278    {
1279        /// The number of slice elements in the object referenced by `self`.
1280        pub(crate) fn len(&self) -> usize {
1281            self.as_inner().meta().get()
1282        }
1283    }
1284}
1285
1286#[cfg(test)]
1287mod tests {
1288    use core::mem::{self, MaybeUninit};
1289
1290    use super::*;
1291    #[allow(unused)] // Needed on our MSRV, but considered unused on later toolchains.
1292    use crate::util::AsAddress;
1293    use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
1294
1295    mod test_ptr_try_cast_into_soundness {
1296        use super::*;
1297
1298        // This test is designed so that if `Ptr::try_cast_into_xxx` are
1299        // buggy, it will manifest as unsoundness that Miri can detect.
1300
1301        // - If `size_of::<T>() == 0`, `N == 4`
1302        // - Else, `N == 4 * size_of::<T>()`
1303        //
1304        // Each test will be run for each metadata in `metas`.
1305        fn test<T, I, const N: usize>(metas: I)
1306        where
1307            T: ?Sized + KnownLayout + Immutable + FromBytes,
1308            I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
1309        {
1310            let mut bytes = [MaybeUninit::<u8>::uninit(); N];
1311            let initialized = [MaybeUninit::new(0u8); N];
1312            for start in 0..=bytes.len() {
1313                for end in start..=bytes.len() {
1314                    // Set all bytes to uninitialized other than those in
1315                    // the range we're going to pass to `try_cast_from`.
1316                    // This allows Miri to detect out-of-bounds reads
1317                    // because they read uninitialized memory. Without this,
1318                    // some out-of-bounds reads would still be in-bounds of
1319                    // `bytes`, and so might spuriously be accepted.
1320                    bytes = [MaybeUninit::<u8>::uninit(); N];
1321                    let bytes = &mut bytes[start..end];
1322                    // Initialize only the byte range we're going to pass to
1323                    // `try_cast_from`.
1324                    bytes.copy_from_slice(&initialized[start..end]);
1325
1326                    let bytes = {
1327                        let bytes: *const [MaybeUninit<u8>] = bytes;
1328                        #[allow(clippy::as_conversions)]
1329                        let bytes = bytes as *const [u8];
1330                        // SAFETY: We just initialized these bytes to valid
1331                        // `u8`s.
1332                        unsafe { &*bytes }
1333                    };
1334
1335                    // SAFETY: The bytes in `slf` must be initialized.
1336                    unsafe fn validate_and_get_len<
1337                        T: ?Sized + KnownLayout + FromBytes + Immutable,
1338                    >(
1339                        slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
1340                    ) -> usize {
1341                        let t = slf.recall_validity().as_ref();
1342
1343                        let bytes = {
1344                            let len = mem::size_of_val(t);
1345                            let t: *const T = t;
1346                            // SAFETY:
1347                            // - We know `t`'s bytes are all initialized
1348                            //   because we just read it from `slf`, which
1349                            //   points to an initialized range of bytes. If
1350                            //   there's a bug and this doesn't hold, then
1351                            //   that's exactly what we're hoping Miri will
1352                            //   catch!
1353                            // - Since `T: FromBytes`, `T` doesn't contain
1354                            //   any `UnsafeCell`s, so it's okay for `t: T`
1355                            //   and a `&[u8]` to the same memory to be
1356                            //   alive concurrently.
1357                            unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
1358                        };
1359
1360                        // This assertion ensures that `t`'s bytes are read
1361                        // and compared to another value, which in turn
1362                        // ensures that Miri gets a chance to notice if any
1363                        // of `t`'s bytes are uninitialized, which they
1364                        // shouldn't be (see the comment above).
1365                        assert_eq!(bytes, vec![0u8; bytes.len()]);
1366
1367                        mem::size_of_val(t)
1368                    }
1369
1370                    for meta in metas.clone().into_iter() {
1371                        for cast_type in [CastType::Prefix, CastType::Suffix] {
1372                            if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
1373                                .try_cast_into::<T, BecauseImmutable>(cast_type, meta)
1374                            {
1375                                // SAFETY: All bytes in `bytes` have been
1376                                // initialized.
1377                                let len = unsafe { validate_and_get_len(slf) };
1378                                assert_eq!(remaining.len(), bytes.len() - len);
1379                                #[allow(unstable_name_collisions)]
1380                                let bytes_addr = bytes.as_ptr().addr();
1381                                #[allow(unstable_name_collisions)]
1382                                let remaining_addr = remaining.as_inner().as_ptr().addr();
1383                                match cast_type {
1384                                    CastType::Prefix => {
1385                                        assert_eq!(remaining_addr, bytes_addr + len)
1386                                    }
1387                                    CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
1388                                }
1389
1390                                if let Some(want) = meta {
1391                                    let got =
1392                                        KnownLayout::pointer_to_metadata(slf.as_inner().as_ptr());
1393                                    assert_eq!(got, want);
1394                                }
1395                            }
1396                        }
1397
1398                        if let Ok(slf) = Ptr::from_ref(bytes)
1399                            .try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
1400                        {
1401                            // SAFETY: All bytes in `bytes` have been
1402                            // initialized.
1403                            let len = unsafe { validate_and_get_len(slf) };
1404                            assert_eq!(len, bytes.len());
1405
1406                            if let Some(want) = meta {
1407                                let got = KnownLayout::pointer_to_metadata(slf.as_inner().as_ptr());
1408                                assert_eq!(got, want);
1409                            }
1410                        }
1411                    }
1412                }
1413            }
1414        }
1415
1416        #[derive(FromBytes, KnownLayout, Immutable)]
1417        #[repr(C)]
1418        struct SliceDst<T> {
1419            a: u8,
1420            trailing: [T],
1421        }
1422
1423        // Each test case becomes its own `#[test]` function. We do this because
1424        // this test in particular takes far, far longer to execute under Miri
1425        // than all of our other tests combined. Previously, we had these
1426        // execute sequentially in a single test function. We run Miri tests in
1427        // parallel in CI, but this test being sequential meant that most of
1428        // that parallelism was wasted, as all other tests would finish in a
1429        // fraction of the total execution time, leaving this test to execute on
1430        // a single thread for the remainder of the test. By putting each test
1431        // case in its own function, we permit better use of available
1432        // parallelism.
1433        macro_rules! test {
1434            ($test_name:ident: $ty:ty) => {
1435                #[test]
1436                #[allow(non_snake_case)]
1437                fn $test_name() {
1438                    const S: usize = core::mem::size_of::<$ty>();
1439                    const N: usize = if S == 0 { 4 } else { S * 4 };
1440                    test::<$ty, _, N>([None]);
1441
1442                    // If `$ty` is a ZST, then we can't pass `None` as the
1443                    // pointer metadata, or else computing the correct trailing
1444                    // slice length will panic.
1445                    if S == 0 {
1446                        test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
1447                        test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
1448                    } else {
1449                        test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1450                        test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1451                    }
1452                }
1453            };
1454            ($ty:ident) => {
1455                test!($ty: $ty);
1456            };
1457            ($($ty:ident),*) => { $(test!($ty);)* }
1458        }
1459
1460        test!(empty_tuple: ());
1461        test!(u8, u16, u32, u64, u128, usize, AU64);
1462        test!(i8, i16, i32, i64, i128, isize);
1463        test!(f32, f64);
1464    }
1465
1466    #[test]
1467    fn test_try_cast_into_explicit_count() {
1468        macro_rules! test {
1469            ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
1470                let bytes = [0u8; $bytes];
1471                let ptr = Ptr::from_ref(&bytes[..]);
1472                let res =
1473                    ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
1474                if let Some(expect) = $expect {
1475                    let (ptr, _) = res.unwrap();
1476                    assert_eq!(KnownLayout::pointer_to_metadata(ptr.as_inner().as_ptr()), expect);
1477                } else {
1478                    let _ = res.unwrap_err();
1479                }
1480            }};
1481        }
1482
1483        #[derive(KnownLayout, Immutable)]
1484        #[repr(C)]
1485        struct ZstDst {
1486            u: [u8; 8],
1487            slc: [()],
1488        }
1489
1490        test!(ZstDst, 8, 0, Some(0));
1491        test!(ZstDst, 7, 0, None);
1492
1493        test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
1494        test!(ZstDst, 7, usize::MAX, None);
1495
1496        #[derive(KnownLayout, Immutable)]
1497        #[repr(C)]
1498        struct Dst {
1499            u: [u8; 8],
1500            slc: [u8],
1501        }
1502
1503        test!(Dst, 8, 0, Some(0));
1504        test!(Dst, 7, 0, None);
1505
1506        test!(Dst, 9, 1, Some(1));
1507        test!(Dst, 8, 1, None);
1508
1509        // If we didn't properly check for overflow, this would cause the
1510        // metadata to overflow to 0, and thus the cast would spuriously
1511        // succeed.
1512        test!(Dst, 8, usize::MAX - 8 + 1, None);
1513    }
1514
1515    #[test]
1516    fn test_try_cast_into_no_leftover_restores_original_slice() {
1517        let bytes = [0u8; 4];
1518        let ptr = Ptr::from_ref(&bytes[..]);
1519        let res = ptr.try_cast_into_no_leftover::<[u8; 2], BecauseImmutable>(None);
1520        match res {
1521            Ok(_) => panic!("should have failed due to leftover bytes"),
1522            Err(CastError::Size(e)) => {
1523                assert_eq!(e.into_src().len(), 4, "Should return original slice length");
1524            }
1525            Err(e) => panic!("wrong error type: {:?}", e),
1526        }
1527    }
1528}