zerocopy/pointer/ptr.rs
1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{
10 fmt::{Debug, Formatter},
11 marker::PhantomData,
12};
13
14use crate::{
15 pointer::{
16 inner::PtrInner,
17 invariant::*,
18 transmute::{MutationCompatible, SizeEq, TransmuteFromPtr},
19 },
20 AlignmentError, CastError, CastType, KnownLayout, SizeError, TryFromBytes, ValidityError,
21};
22
23/// Module used to gate access to [`Ptr`]'s fields.
24mod def {
25 #[cfg(doc)]
26 use super::super::invariant;
27 use super::*;
28
29 /// A raw pointer with more restrictions.
30 ///
31 /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
32 /// following ways (note that these requirements only hold of non-zero-sized
33 /// referents):
34 /// - It must derive from a valid allocation.
35 /// - It must reference a byte range which is contained inside the
36 /// allocation from which it derives.
37 /// - As a consequence, the byte range it references must have a size
38 /// which does not overflow `isize`.
39 ///
40 /// Depending on how `Ptr` is parameterized, it may have additional
41 /// invariants:
42 /// - `ptr` conforms to the aliasing invariant of
43 /// [`I::Aliasing`](invariant::Aliasing).
44 /// - `ptr` conforms to the alignment invariant of
45 /// [`I::Alignment`](invariant::Alignment).
46 /// - `ptr` conforms to the validity invariant of
47 /// [`I::Validity`](invariant::Validity).
48 ///
49 /// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`.
50 ///
51 /// [`NonNull<T>`]: core::ptr::NonNull
52 /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
53 pub struct Ptr<'a, T, I>
54 where
55 T: ?Sized,
56 I: Invariants,
57 {
58 /// # Invariants
59 ///
60 /// 0. `ptr` conforms to the aliasing invariant of
61 /// [`I::Aliasing`](invariant::Aliasing).
62 /// 1. `ptr` conforms to the alignment invariant of
63 /// [`I::Alignment`](invariant::Alignment).
64 /// 2. `ptr` conforms to the validity invariant of
65 /// [`I::Validity`](invariant::Validity).
66 // SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`.
67 ptr: PtrInner<'a, T>,
68 _invariants: PhantomData<I>,
69 }
70
71 impl<'a, T, I> Ptr<'a, T, I>
72 where
73 T: 'a + ?Sized,
74 I: Invariants,
75 {
76 /// Constructs a new `Ptr` from a [`PtrInner`].
77 ///
78 /// # Safety
79 ///
80 /// The caller promises that:
81 ///
82 /// 0. `ptr` conforms to the aliasing invariant of
83 /// [`I::Aliasing`](invariant::Aliasing).
84 /// 1. `ptr` conforms to the alignment invariant of
85 /// [`I::Alignment`](invariant::Alignment).
86 /// 2. `ptr` conforms to the validity invariant of
87 /// [`I::Validity`](invariant::Validity).
88 pub(crate) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> {
89 // SAFETY: The caller has promised to satisfy all safety invariants
90 // of `Ptr`.
91 Self { ptr, _invariants: PhantomData }
92 }
93
94 /// Converts this `Ptr<T>` to a [`PtrInner<T>`].
95 ///
96 /// Note that this method does not consume `self`. The caller should
97 /// watch out for `unsafe` code which uses the returned value in a way
98 /// that violates the safety invariants of `self`.
99 pub(crate) fn as_inner(&self) -> PtrInner<'a, T> {
100 self.ptr
101 }
102 }
103}
104
105#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
106pub use def::Ptr;
107
108/// External trait implementations on [`Ptr`].
109mod _external {
110 use super::*;
111
112 /// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants
113 /// (besides aliasing) are unaffected by the number of references that exist
114 /// to `Ptr`'s referent. The notable cases are:
115 /// - Alignment is a property of the referent type (`T`) and the address,
116 /// both of which are unchanged
117 /// - Let `S(T, V)` be the set of bit values permitted to appear in the
118 /// referent of a `Ptr<T, I: Invariants<Validity = V>>`. Since this copy
119 /// does not change `I::Validity` or `T`, `S(T, I::Validity)` is also
120 /// unchanged.
121 ///
122 /// We are required to guarantee that the referents of the original `Ptr`
123 /// and of the copy (which, of course, are actually the same since they
124 /// live in the same byte address range) both remain in the set `S(T,
125 /// I::Validity)`. Since this invariant holds on the original `Ptr`, it
126 /// cannot be violated by the original `Ptr`, and thus the original `Ptr`
127 /// cannot be used to violate this invariant on the copy. The inverse
128 /// holds as well.
129 impl<'a, T, I> Copy for Ptr<'a, T, I>
130 where
131 T: 'a + ?Sized,
132 I: Invariants<Aliasing = Shared>,
133 {
134 }
135
136 /// SAFETY: See the safety comment on `Copy`.
137 impl<'a, T, I> Clone for Ptr<'a, T, I>
138 where
139 T: 'a + ?Sized,
140 I: Invariants<Aliasing = Shared>,
141 {
142 #[inline]
143 fn clone(&self) -> Self {
144 *self
145 }
146 }
147
148 impl<'a, T, I> Debug for Ptr<'a, T, I>
149 where
150 T: 'a + ?Sized,
151 I: Invariants,
152 {
153 #[inline]
154 fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
155 self.as_inner().as_non_null().fmt(f)
156 }
157 }
158}
159
160/// Methods for converting to and from `Ptr` and Rust's safe reference types.
161mod _conversions {
162 use super::*;
163 use crate::pointer::cast::{CastExact, CastSized, IdCast};
164
165 /// `&'a T` → `Ptr<'a, T>`
166 impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
167 where
168 T: 'a + ?Sized,
169 {
170 /// Constructs a `Ptr` from a shared reference.
171 #[doc(hidden)]
172 #[inline(always)]
173 pub fn from_ref(ptr: &'a T) -> Self {
174 let inner = PtrInner::from_ref(ptr);
175 // SAFETY:
176 // 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing
177 // invariant of `Shared`.
178 // 1. `ptr`, by invariant on `&'a T`, conforms to the alignment
179 // invariant of `Aligned`.
180 // 2. `ptr`'s referent, by invariant on `&'a T`, is a bit-valid `T`.
181 // This satisfies the requirement that a `Ptr<T, (_, _, Valid)>`
182 // point to a bit-valid `T`. Even if `T` permits interior
183 // mutation, this invariant guarantees that the returned `Ptr`
184 // can only ever be used to modify the referent to store
185 // bit-valid `T`s, which ensures that the returned `Ptr` cannot
186 // be used to violate the soundness of the original `ptr: &'a T`
187 // or of any other references that may exist to the same
188 // referent.
189 unsafe { Self::from_inner(inner) }
190 }
191 }
192
193 /// `&'a mut T` → `Ptr<'a, T>`
194 impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
195 where
196 T: 'a + ?Sized,
197 {
198 /// Constructs a `Ptr` from an exclusive reference.
199 #[doc(hidden)]
200 #[inline(always)]
201 pub fn from_mut(ptr: &'a mut T) -> Self {
202 let inner = PtrInner::from_mut(ptr);
203 // SAFETY:
204 // 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
205 // invariant of `Exclusive`.
206 // 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
207 // invariant of `Aligned`.
208 // 2. `ptr`'s referent, by invariant on `&'a mut T`, is a bit-valid
209 // `T`. This satisfies the requirement that a `Ptr<T, (_, _,
210 // Valid)>` point to a bit-valid `T`. This invariant guarantees
211 // that the returned `Ptr` can only ever be used to modify the
212 // referent to store bit-valid `T`s, which ensures that the
213 // returned `Ptr` cannot be used to violate the soundness of the
214 // original `ptr: &'a mut T`.
215 unsafe { Self::from_inner(inner) }
216 }
217 }
218
219 /// `Ptr<'a, T>` → `&'a T`
220 impl<'a, T, I> Ptr<'a, T, I>
221 where
222 T: 'a + ?Sized,
223 I: Invariants<Alignment = Aligned, Validity = Valid>,
224 I::Aliasing: Reference,
225 {
226 /// Converts `self` to a shared reference.
227 // This consumes `self`, not `&self`, because `self` is, logically, a
228 // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
229 // this doesn't prevent the caller from still using the pointer after
230 // calling `as_ref`.
231 #[allow(clippy::wrong_self_convention)]
232 pub(crate) fn as_ref(self) -> &'a T {
233 let raw = self.as_inner().as_non_null();
234 // SAFETY: `self` satisfies the `Aligned` invariant, so we know that
235 // `raw` is validly-aligned for `T`.
236 #[cfg(miri)]
237 unsafe {
238 crate::util::miri_promise_symbolic_alignment(
239 raw.as_ptr().cast(),
240 core::mem::align_of_val_raw(raw.as_ptr()),
241 );
242 }
243 // SAFETY: This invocation of `NonNull::as_ref` satisfies its
244 // documented safety preconditions:
245 //
246 // 1. The pointer is properly aligned. This is ensured by-contract
247 // on `Ptr`, because the `I::Alignment` is `Aligned`.
248 //
249 // 2. If the pointer's referent is not zero-sized, then the pointer
250 // must be “dereferenceable” in the sense defined in the module
251 // documentation; i.e.:
252 //
253 // > The memory range of the given size starting at the pointer
254 // > must all be within the bounds of a single allocated object.
255 // > [2]
256 //
257 // This is ensured by contract on all `PtrInner`s.
258 //
259 // 3. The pointer must point to a validly-initialized instance of
260 // `T`. This is ensured by-contract on `Ptr`, because the
261 // `I::Validity` is `Valid`.
262 //
263 // 4. You must enforce Rust’s aliasing rules. This is ensured by
264 // contract on `Ptr`, because `I::Aliasing: Reference`. Either it
265 // is `Shared` or `Exclusive`. If it is `Shared`, other
266 // references may not mutate the referent outside of
267 // `UnsafeCell`s.
268 //
269 // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
270 // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
271 unsafe { raw.as_ref() }
272 }
273 }
274
275 impl<'a, T, I> Ptr<'a, T, I>
276 where
277 T: 'a + ?Sized,
278 I: Invariants,
279 I::Aliasing: Reference,
280 {
281 /// Reborrows `self`, producing another `Ptr`.
282 ///
283 /// Since `self` is borrowed mutably, this prevents any methods from
284 /// being called on `self` as long as the returned `Ptr` exists.
285 #[doc(hidden)]
286 #[inline]
287 #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
288 pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
289 where
290 'a: 'b,
291 {
292 // SAFETY: The following all hold by invariant on `self`, and thus
293 // hold of `ptr = self.as_inner()`:
294 // 0. SEE BELOW.
295 // 1. `ptr` conforms to the alignment invariant of
296 // [`I::Alignment`](invariant::Alignment).
297 // 2. `ptr` conforms to the validity invariant of
298 // [`I::Validity`](invariant::Validity). `self` and the returned
299 // `Ptr` permit the same bit values in their referents since they
300 // have the same referent type (`T`) and the same validity
301 // (`I::Validity`). Thus, regardless of what mutation is
302 // permitted (`Exclusive` aliasing or `Shared`-aliased interior
303 // mutation), neither can be used to write a value to the
304 // referent which violates the other's validity invariant.
305 //
306 // For aliasing (0 above), since `I::Aliasing: Reference`,
307 // there are two cases for `I::Aliasing`:
308 // - For `invariant::Shared`: `'a` outlives `'b`, and so the
309 // returned `Ptr` does not permit accessing the referent any
310 // longer than is possible via `self`. For shared aliasing, it is
311 // sound for multiple `Ptr`s to exist simultaneously which
312 // reference the same memory, so creating a new one is not
313 // problematic.
314 // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
315 // return a `Ptr` with lifetime `'b`, `self` is inaccessible to
316 // the caller for the lifetime `'b` - in other words, `self` is
317 // inaccessible to the caller as long as the returned `Ptr`
318 // exists. Since `self` is an exclusive `Ptr`, no other live
319 // references or `Ptr`s may exist which refer to the same memory
320 // while `self` is live. Thus, as long as the returned `Ptr`
321 // exists, no other references or `Ptr`s which refer to the same
322 // memory may be live.
323 unsafe { Ptr::from_inner(self.as_inner()) }
324 }
325
326 /// Reborrows `self` as shared, producing another `Ptr` with `Shared`
327 /// aliasing.
328 ///
329 /// Since `self` is borrowed mutably, this prevents any methods from
330 /// being called on `self` as long as the returned `Ptr` exists.
331 #[doc(hidden)]
332 #[inline]
333 #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
334 pub fn reborrow_shared<'b>(&'b mut self) -> Ptr<'b, T, (Shared, I::Alignment, I::Validity)>
335 where
336 'a: 'b,
337 {
338 // SAFETY: The following all hold by invariant on `self`, and thus
339 // hold of `ptr = self.as_inner()`:
340 // 0. SEE BELOW.
341 // 1. `ptr` conforms to the alignment invariant of
342 // [`I::Alignment`](invariant::Alignment).
343 // 2. `ptr` conforms to the validity invariant of
344 // [`I::Validity`](invariant::Validity). `self` and the returned
345 // `Ptr` permit the same bit values in their referents since they
346 // have the same referent type (`T`) and the same validity
347 // (`I::Validity`). Thus, regardless of what mutation is
348 // permitted (`Exclusive` aliasing or `Shared`-aliased interior
349 // mutation), neither can be used to write a value to the
350 // referent which violates the other's validity invariant.
351 //
352 // For aliasing (0 above), since `I::Aliasing: Reference`,
353 // there are two cases for `I::Aliasing`:
354 // - For `invariant::Shared`: `'a` outlives `'b`, and so the
355 // returned `Ptr` does not permit accessing the referent any
356 // longer than is possible via `self`. For shared aliasing, it is
357 // sound for multiple `Ptr`s to exist simultaneously which
358 // reference the same memory, so creating a new one is not
359 // problematic.
360 // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
361 // return a `Ptr` with lifetime `'b`, `self` is inaccessible to
362 // the caller for the lifetime `'b` - in other words, `self` is
363 // inaccessible to the caller as long as the returned `Ptr`
364 // exists. Since `self` is an exclusive `Ptr`, no other live
365 // references or `Ptr`s may exist which refer to the same memory
366 // while `self` is live. Thus, as long as the returned `Ptr`
367 // exists, no other references or `Ptr`s which refer to the same
368 // memory may be live.
369 unsafe { Ptr::from_inner(self.as_inner()) }
370 }
371 }
372
373 /// `Ptr<'a, T>` → `&'a mut T`
374 impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
375 where
376 T: 'a + ?Sized,
377 {
378 /// Converts `self` to a mutable reference.
379 #[allow(clippy::wrong_self_convention)]
380 pub(crate) fn as_mut(self) -> &'a mut T {
381 let mut raw = self.as_inner().as_non_null();
382 // SAFETY: `self` satisfies the `Aligned` invariant, so we know that
383 // `raw` is validly-aligned for `T`.
384 #[cfg(miri)]
385 unsafe {
386 crate::util::miri_promise_symbolic_alignment(
387 raw.as_ptr().cast(),
388 core::mem::align_of_val_raw(raw.as_ptr()),
389 );
390 }
391 // SAFETY: This invocation of `NonNull::as_mut` satisfies its
392 // documented safety preconditions:
393 //
394 // 1. The pointer is properly aligned. This is ensured by-contract
395 // on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
396 //
397 // 2. If the pointer's referent is not zero-sized, then the pointer
398 // must be “dereferenceable” in the sense defined in the module
399 // documentation; i.e.:
400 //
401 // > The memory range of the given size starting at the pointer
402 // > must all be within the bounds of a single allocated object.
403 // > [2]
404 //
405 // This is ensured by contract on all `PtrInner`s.
406 //
407 // 3. The pointer must point to a validly-initialized instance of
408 // `T`. This is ensured by-contract on `Ptr`, because the
409 // validity invariant is `Valid`.
410 //
411 // 4. You must enforce Rust’s aliasing rules. This is ensured by
412 // contract on `Ptr`, because the `ALIASING_INVARIANT` is
413 // `Exclusive`.
414 //
415 // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
416 // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
417 unsafe { raw.as_mut() }
418 }
419 }
420
421 /// `Ptr<'a, T>` → `Ptr<'a, U>`
422 impl<'a, T: ?Sized, I> Ptr<'a, T, I>
423 where
424 I: Invariants,
425 {
426 #[must_use]
427 #[inline(always)]
428 pub fn transmute<U, V, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
429 where
430 V: Validity,
431 U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, <U as SizeEq<T>>::CastFrom, R>
432 + SizeEq<T>
433 + ?Sized,
434 {
435 self.transmute_with::<U, V, <U as SizeEq<T>>::CastFrom, R>()
436 }
437
438 pub(crate) fn transmute_with<U, V, C, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
439 where
440 V: Validity,
441 U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, C, R> + ?Sized,
442 C: CastExact<T, U>,
443 {
444 // SAFETY:
445 // - By `C: CastExact`, `C` preserves referent address, and so we
446 // don't need to consider projections in the following safety
447 // arguments.
448 // - If aliasing is `Shared`, then by `U: TransmuteFromPtr<T>`, at
449 // least one of the following holds:
450 // - `T: Immutable` and `U: Immutable`, in which case it is
451 // trivially sound for shared code to operate on a `&T` and `&U`
452 // at the same time, as neither can perform interior mutation
453 // - It is directly guaranteed that it is sound for shared code to
454 // operate on these references simultaneously
455 // - By `U: TransmuteFromPtr<T, I::Aliasing, I::Validity, C, V>`, it
456 // is sound to perform this transmute using `C`.
457 unsafe { self.project_transmute_unchecked::<_, _, C>() }
458 }
459
460 #[doc(hidden)]
461 #[inline(always)]
462 #[must_use]
463 pub fn recall_validity<V, R>(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)>
464 where
465 V: Validity,
466 T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, IdCast, R>,
467 {
468 let ptr = self.transmute_with::<T, V, IdCast, R>();
469 // SAFETY: `self` and `ptr` have the same address and referent type.
470 // Therefore, if `self` satisfies `I::Alignment`, then so does
471 // `ptr`.
472 unsafe { ptr.assume_alignment::<I::Alignment>() }
473 }
474
475 /// Projects and/or transmutes to a different (unsized) referent type
476 /// without checking interior mutability.
477 ///
478 /// Callers should prefer [`cast`] or [`project`] where possible.
479 ///
480 /// [`cast`]: Ptr::cast
481 /// [`project`]: Ptr::project
482 ///
483 /// # Safety
484 ///
485 /// The caller promises that:
486 /// - If `I::Aliasing` is [`Shared`], it must not be possible for safe
487 /// code, operating on a `&T` and `&U`, with the referents of `self`
488 /// and `self.project_transmute_unchecked()`, respectively, to cause
489 /// undefined behavior.
490 /// - It is sound to project and/or transmute a pointer of type `T` with
491 /// aliasing `I::Aliasing` and validity `I::Validity` to a pointer of
492 /// type `U` with aliasing `I::Aliasing` and validity `V`. This is a
493 /// subtle soundness requirement that is a function of `T`, `U`,
494 /// `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the
495 /// presence, absence, or specific location of `UnsafeCell`s in `T`
496 /// and/or `U`, and on whether interior mutation is ever permitted via
497 /// those `UnsafeCell`s. See [`Validity`] for more details.
498 #[doc(hidden)]
499 #[inline(always)]
500 #[must_use]
501 pub unsafe fn project_transmute_unchecked<U: ?Sized, V, P>(
502 self,
503 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
504 where
505 V: Validity,
506 P: crate::pointer::cast::Project<T, U>,
507 {
508 let ptr = self.as_inner().project::<_, P>();
509
510 // SAFETY:
511 //
512 // The following safety arguments rely on the fact that `P: Project`
513 // guarantees that `P` is a referent-preserving or -shrinking
514 // projection. Thus, `ptr` addresses a subset of the bytes of
515 // `*self`, and so certain properties that hold of `*self` also hold
516 // of `*ptr`.
517 //
518 // 0. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
519 // - `Exclusive`: `self` is the only `Ptr` or reference which is
520 // permitted to read or modify the referent for the lifetime
521 // `'a`. Since we consume `self` by value, the returned pointer
522 // remains the only `Ptr` or reference which is permitted to
523 // read or modify the referent for the lifetime `'a`.
524 // - `Shared`: Since `self` has aliasing `Shared`, we know that
525 // no other code may mutate the referent during the lifetime
526 // `'a`, except via `UnsafeCell`s, and except as permitted by
527 // `T`'s library safety invariants. The caller promises that
528 // any safe operations which can be permitted on a `&T` and a
529 // `&U` simultaneously must be sound. Thus, no operations on a
530 // `&U` could violate `&T`'s library safety invariants, and
531 // vice-versa. Since any mutation via shared references outside
532 // of `UnsafeCell`s is unsound, this must be impossible using
533 // `&T` and `&U`.
534 // - `Inaccessible`: There are no restrictions we need to uphold.
535 // 1. `ptr` trivially satisfies the alignment invariant `Unaligned`.
536 // 2. The caller promises that the returned pointer satisfies the
537 // validity invariant `V` with respect to its referent type, `U`.
538 unsafe { Ptr::from_inner(ptr) }
539 }
540 }
541
542 /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
543 impl<'a, T, I> Ptr<'a, T, I>
544 where
545 I: Invariants,
546 {
547 /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
548 /// `Unalign<T>`.
549 pub(crate) fn into_unalign(
550 self,
551 ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
552 // FIXME(#1359): This should be a `transmute_with` call.
553 // Unfortunately, to avoid blanket impl conflicts, we only implement
554 // `TransmuteFrom<T>` for `Unalign<T>` (and vice versa) specifically
555 // for `Valid` validity, not for all validity types.
556
557 // SAFETY:
558 // - By `CastSized: Cast`, `CastSized` preserves referent address,
559 // and so we don't need to consider projections in the following
560 // safety arguments.
561 // - Since `Unalign<T>` has the same layout as `T`, the returned
562 // pointer refers to `UnsafeCell`s at the same locations as
563 // `self`.
564 // - `Unalign<T>` promises to have the same bit validity as `T`. By
565 // invariant on `Validity`, the set of bit patterns allowed in the
566 // referent of a `Ptr<X, (_, _, V)>` is only a function of the
567 // validity of `X` and of `V`. Thus, the set of bit patterns
568 // allowed in the referent of a `Ptr<T, (_, _, I::Validity)>` is
569 // the same as the set of bit patterns allowed in the referent of
570 // a `Ptr<Unalign<T>, (_, _, I::Validity)>`. As a result, `self`
571 // and the returned `Ptr` permit the same set of bit patterns in
572 // their referents, and so neither can be used to violate the
573 // validity of the other.
574 let ptr = unsafe { self.project_transmute_unchecked::<_, _, CastSized>() };
575 ptr.bikeshed_recall_aligned()
576 }
577 }
578
579 impl<'a, T, I> Ptr<'a, T, I>
580 where
581 T: ?Sized,
582 I: Invariants<Validity = Valid>,
583 I::Aliasing: Reference,
584 {
585 /// Reads the referent.
586 #[must_use]
587 #[inline]
588 pub fn read_unaligned<R>(self) -> T
589 where
590 T: Copy,
591 T: Read<I::Aliasing, R>,
592 {
593 (*self.into_unalign().as_ref()).into_inner()
594 }
595
596 /// Views the value as an aligned reference.
597 ///
598 /// This is only available if `T` is [`Unaligned`].
599 #[must_use]
600 #[inline]
601 pub fn unaligned_as_ref(self) -> &'a T
602 where
603 T: crate::Unaligned,
604 {
605 self.bikeshed_recall_aligned().as_ref()
606 }
607 }
608}
609
610/// State transitions between invariants.
611mod _transitions {
612 use super::*;
613 use crate::{
614 pointer::{cast::IdCast, transmute::TryTransmuteFromPtr},
615 ReadOnly,
616 };
617
618 impl<'a, T, I> Ptr<'a, T, I>
619 where
620 T: 'a + ?Sized,
621 I: Invariants,
622 {
623 /// Assumes that `self` satisfies the invariants `H`.
624 ///
625 /// # Safety
626 ///
627 /// The caller promises that `self` satisfies the invariants `H`.
628 unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
629 // SAFETY: The caller has promised to satisfy all parameterized
630 // invariants of `Ptr`. `Ptr`'s other invariants are satisfied
631 // by-contract by the source `Ptr`.
632 unsafe { Ptr::from_inner(self.as_inner()) }
633 }
634
635 /// Helps the type system unify two distinct invariant types which are
636 /// actually the same.
637 pub(crate) fn unify_invariants<
638 H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
639 >(
640 self,
641 ) -> Ptr<'a, T, H> {
642 // SAFETY: The associated type bounds on `H` ensure that the
643 // invariants are unchanged.
644 unsafe { self.assume_invariants::<H>() }
645 }
646
647 /// Assumes that `self`'s referent is validly-aligned for `T` if
648 /// required by `A`.
649 ///
650 /// # Safety
651 ///
652 /// The caller promises that `self`'s referent conforms to the alignment
653 /// invariant of `T` if required by `A`.
654 #[inline]
655 pub(crate) unsafe fn assume_alignment<A: Alignment>(
656 self,
657 ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
658 // SAFETY: The caller promises that `self`'s referent is
659 // well-aligned for `T` if required by `A` .
660 unsafe { self.assume_invariants() }
661 }
662
663 /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
664 /// on success.
665 pub(crate) fn try_into_aligned(
666 self,
667 ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
668 where
669 T: Sized,
670 {
671 if let Err(err) =
672 crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null())
673 {
674 return Err(err.with_src(self));
675 }
676
677 // SAFETY: We just checked the alignment.
678 Ok(unsafe { self.assume_alignment::<Aligned>() })
679 }
680
681 /// Recalls that `self`'s referent is validly-aligned for `T`.
682 #[inline]
683 // FIXME(#859): Reconsider the name of this method before making it
684 // public.
685 pub(crate) fn bikeshed_recall_aligned(
686 self,
687 ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
688 where
689 T: crate::Unaligned,
690 {
691 // SAFETY: The bound `T: Unaligned` ensures that `T` has no
692 // non-trivial alignment requirement.
693 unsafe { self.assume_alignment::<Aligned>() }
694 }
695
696 /// Assumes that `self`'s referent conforms to the validity requirement
697 /// of `V`.
698 ///
699 /// # Safety
700 ///
701 /// The caller promises that `self`'s referent conforms to the validity
702 /// requirement of `V`.
703 #[doc(hidden)]
704 #[must_use]
705 #[inline]
706 pub unsafe fn assume_validity<V: Validity>(
707 self,
708 ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
709 // SAFETY: The caller promises that `self`'s referent conforms to
710 // the validity requirement of `V`.
711 unsafe { self.assume_invariants() }
712 }
713
714 /// A shorthand for `self.assume_validity<invariant::Initialized>()`.
715 ///
716 /// # Safety
717 ///
718 /// The caller promises to uphold the safety preconditions of
719 /// `self.assume_validity<invariant::Initialized>()`.
720 #[doc(hidden)]
721 #[must_use]
722 #[inline]
723 pub unsafe fn assume_initialized(
724 self,
725 ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
726 // SAFETY: The caller has promised to uphold the safety
727 // preconditions.
728 unsafe { self.assume_validity::<Initialized>() }
729 }
730
731 /// A shorthand for `self.assume_validity<Valid>()`.
732 ///
733 /// # Safety
734 ///
735 /// The caller promises to uphold the safety preconditions of
736 /// `self.assume_validity<Valid>()`.
737 #[doc(hidden)]
738 #[must_use]
739 #[inline]
740 pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
741 // SAFETY: The caller has promised to uphold the safety
742 // preconditions.
743 unsafe { self.assume_validity::<Valid>() }
744 }
745
746 /// Checks that `self`'s referent is validly initialized for `T`,
747 /// returning a `Ptr` with `Valid` on success.
748 ///
749 /// # Panics
750 ///
751 /// This method will panic if
752 /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
753 ///
754 /// # Safety
755 ///
756 /// On error, unsafe code may rely on this method's returned
757 /// `ValidityError` containing `self`.
758 #[inline]
759 pub(crate) fn try_into_valid<R, S>(
760 mut self,
761 ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
762 where
763 T: TryFromBytes
764 + Read<I::Aliasing, R>
765 + TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid, IdCast, S>,
766 ReadOnly<T>: Read<I::Aliasing, R>,
767 I::Aliasing: Reference,
768 I: Invariants<Validity = Initialized>,
769 {
770 // This call may panic. If that happens, it doesn't cause any
771 // soundness issues, as we have not generated any invalid state
772 // which we need to fix before returning.
773 if T::is_bit_valid(self.reborrow().transmute::<_, _, _>().reborrow_shared()) {
774 // SAFETY: If `T::is_bit_valid`, code may assume that `self`
775 // contains a bit-valid instance of `T`. By `T:
776 // TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid>`, so
777 // long as `self`'s referent conforms to the `Valid` validity
778 // for `T` (which we just confirmed), then this transmute is
779 // sound.
780 Ok(unsafe { self.assume_valid() })
781 } else {
782 Err(ValidityError::new(self))
783 }
784 }
785
786 /// Forgets that `self`'s referent is validly-aligned for `T`.
787 #[doc(hidden)]
788 #[must_use]
789 #[inline]
790 pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> {
791 // SAFETY: `Unaligned` is less restrictive than `Aligned`.
792 unsafe { self.assume_invariants() }
793 }
794 }
795}
796
797/// Casts of the referent type.
798pub(crate) use _casts::TryWithError;
799mod _casts {
800 use core::cell::UnsafeCell;
801
802 use super::*;
803 use crate::{
804 pointer::cast::{AsBytesCast, Cast},
805 HasTag, ProjectField,
806 };
807
808 impl<'a, T, I> Ptr<'a, T, I>
809 where
810 T: 'a + ?Sized,
811 I: Invariants,
812 {
813 /// Casts to a different referent type without checking interior
814 /// mutability.
815 ///
816 /// Callers should prefer [`cast`][Ptr::cast] where possible.
817 ///
818 /// # Safety
819 ///
820 /// If `I::Aliasing` is [`Shared`], it must not be possible for safe
821 /// code, operating on a `&T` and `&U` with the same referent
822 /// simultaneously, to cause undefined behavior.
823 #[doc(hidden)]
824 #[inline(always)]
825 #[must_use]
826 pub unsafe fn cast_unchecked<U, C: Cast<T, U>>(
827 self,
828 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
829 where
830 U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,
831 {
832 // SAFETY:
833 // - By `C: Cast`, `C` preserves the address of the referent.
834 // - If `I::Aliasing` is [`Shared`], the caller promises that it
835 // is not possible for safe code, operating on a `&T` and `&U`
836 // with the same referent simultaneously, to cause undefined
837 // behavior.
838 // - By `U: CastableFrom<T, I::Validity, I::Validity>`,
839 // `I::Validity` is either `Uninit` or `Initialized`. In both
840 // cases, the bit validity `I::Validity` has the same semantics
841 // regardless of referent type. In other words, the set of allowed
842 // referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U,
843 // (_, _, I::Validity)>` are identical. As a consequence, neither
844 // `self` nor the returned `Ptr` can be used to write values which
845 // are invalid for the other.
846 unsafe { self.project_transmute_unchecked::<_, _, C>() }
847 }
848
849 /// Casts to a different referent type.
850 #[doc(hidden)]
851 #[inline(always)]
852 #[must_use]
853 pub fn cast<U, C, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
854 where
855 T: MutationCompatible<U, I::Aliasing, I::Validity, I::Validity, R>,
856 U: 'a + ?Sized + CastableFrom<T, I::Validity, I::Validity>,
857 C: Cast<T, U>,
858 {
859 // SAFETY: Because `T: MutationCompatible<U, I::Aliasing, R>`, one
860 // of the following holds:
861 // - `T: Read<I::Aliasing>` and `U: Read<I::Aliasing>`, in which
862 // case one of the following holds:
863 // - `I::Aliasing` is `Exclusive`
864 // - `T` and `U` are both `Immutable`
865 // - It is sound for safe code to operate on `&T` and `&U` with the
866 // same referent simultaneously.
867 unsafe { self.cast_unchecked::<_, C>() }
868 }
869
870 #[inline(always)]
871 pub fn project<F, const VARIANT_ID: i128, const FIELD_ID: i128>(
872 mut self,
873 ) -> Result<Ptr<'a, T::Type, T::Invariants>, T::Error>
874 where
875 T: ProjectField<F, I, VARIANT_ID, FIELD_ID>,
876 I::Aliasing: Reference,
877 {
878 use crate::pointer::cast::Projection;
879 match T::is_projectable(self.reborrow().project_tag()) {
880 Ok(()) => {
881 let inner = self.as_inner();
882 let projected = inner.project::<_, Projection<F, VARIANT_ID, FIELD_ID>>();
883 // SAFETY: By `T: ProjectField<F, I, VARIANT_ID, FIELD_ID>`,
884 // for `self: Ptr<'_, T, I>` such that `T::is_projectable`
885 // (which we've verified in this match arm),
886 // `T::project(self.as_inner())` conforms to
887 // `T::Invariants`. The `projected` pointer satisfies these
888 // invariants because it is produced by way of an
889 // abstraction that is equivalent to
890 // `T::project(ptr.as_inner())`: by invariant on
891 // `PtrInner::project`, `projected` is guaranteed to address
892 // the subset of the bytes of `inner`'s referent addressed
893 // by `Projection::project(inner)`, and by invariant on
894 // `Projection`, `Projection::project` is implemented by
895 // delegating to an implementation of `HasField::project`.
896 Ok(unsafe { Ptr::from_inner(projected) })
897 }
898 Err(err) => Err(err),
899 }
900 }
901
902 #[must_use]
903 #[inline(always)]
904 pub(crate) fn project_tag(self) -> Ptr<'a, T::Tag, I>
905 where
906 T: HasTag,
907 {
908 // SAFETY: By invariant on `Self::ProjectToTag`, this is a sound
909 // projection.
910 let tag = unsafe { self.project_transmute_unchecked::<_, _, T::ProjectToTag>() };
911 // SAFETY: By invariant on `Self::ProjectToTag`, the projected
912 // pointer has the same alignment as `ptr`.
913 let tag = unsafe { tag.assume_alignment() };
914 tag.unify_invariants()
915 }
916
917 /// Attempts to transform the pointer, restoring the original on
918 /// failure.
919 ///
920 /// # Safety
921 ///
922 /// If `I::Aliasing != Shared`, then if `f` returns `Err(err)`, no copy
923 /// of `f`'s argument must exist outside of `err`.
924 #[inline(always)]
925 pub(crate) unsafe fn try_with_unchecked<U, J, E, F>(
926 self,
927 f: F,
928 ) -> Result<Ptr<'a, U, J>, E::Mapped>
929 where
930 U: 'a + ?Sized,
931 J: Invariants<Aliasing = I::Aliasing>,
932 E: TryWithError<Self>,
933 F: FnOnce(Ptr<'a, T, I>) -> Result<Ptr<'a, U, J>, E>,
934 {
935 let old_inner = self.as_inner();
936 #[rustfmt::skip]
937 let res = f(self).map_err(#[inline(always)] move |err: E| {
938 err.map(#[inline(always)] |src| {
939 drop(src);
940
941 // SAFETY:
942 // 0. Aliasing is either `Shared` or `Exclusive`:
943 // - If aliasing is `Shared`, then it cannot violate
944 // aliasing make another copy of this pointer (in fact,
945 // using `I::Aliasing = Shared`, we could have just
946 // cloned `self`).
947 // - If aliasing is `Exclusive`, then `f` is not allowed
948 // to make another copy of `self`. In `map_err`, we are
949 // consuming the only value in the returned `Result`.
950 // By invariant on `E: TryWithError<Self>`, that `err:
951 // E` only contains a single `Self` and no other
952 // non-ZST fields which could be `Ptr`s or references
953 // to `self`'s referent. By the same invariant, `map`
954 // consumes this single `Self` and passes it to this
955 // closure. Since `self` was, by invariant on
956 // `Exclusive`, the only `Ptr` or reference live for
957 // `'a` with this referent, and since we `drop(src)`
958 // above, there are no copies left, and so we are
959 // creating the only copy.
960 // 1. `self` conforms to `I::Aliasing` by invariant on
961 // `Ptr`, and `old_inner` has the same address, so it
962 // does too.
963 // 2. `f` could not have violated `self`'s validity without
964 // itself being unsound. Assuming that `f` is sound, the
965 // referent of `self` is still valid for `T`.
966 unsafe { Ptr::from_inner(old_inner) }
967 })
968 });
969 res
970 }
971
972 /// Attempts to transform the pointer, restoring the original on
973 /// failure.
974 pub(crate) fn try_with<U, J, E, F>(self, f: F) -> Result<Ptr<'a, U, J>, E::Mapped>
975 where
976 U: 'a + ?Sized,
977 J: Invariants<Aliasing = I::Aliasing>,
978 E: TryWithError<Self>,
979 F: FnOnce(Ptr<'a, T, I>) -> Result<Ptr<'a, U, J>, E>,
980 I: Invariants<Aliasing = Shared>,
981 {
982 // SAFETY: `I::Aliasing = Shared`, so the safety condition does not
983 // apply.
984 unsafe { self.try_with_unchecked(f) }
985 }
986 }
987
988 /// # Safety
989 ///
990 /// `Self` only contains a single `Self::Inner`, and `Self::Mapped` only
991 /// contains a single `MappedInner`. Other than that, `Self` and
992 /// `Self::Mapped` contain no non-ZST fields.
993 ///
994 /// `map` must pass ownership of `self`'s sole `Self::Inner` to `f`.
995 pub(crate) unsafe trait TryWithError<MappedInner> {
996 type Inner;
997 type Mapped;
998 fn map<F: FnOnce(Self::Inner) -> MappedInner>(self, f: F) -> Self::Mapped;
999 }
1000
1001 impl<'a, T, I> Ptr<'a, T, I>
1002 where
1003 T: 'a + KnownLayout + ?Sized,
1004 I: Invariants,
1005 {
1006 /// Casts this pointer-to-initialized into a pointer-to-bytes.
1007 #[allow(clippy::wrong_self_convention)]
1008 #[must_use]
1009 #[inline]
1010 pub fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
1011 where
1012 [u8]: TransmuteFromPtr<T, I::Aliasing, I::Validity, Valid, AsBytesCast, R>,
1013 {
1014 self.transmute_with::<[u8], Valid, AsBytesCast, _>().bikeshed_recall_aligned()
1015 }
1016 }
1017
1018 impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
1019 where
1020 T: 'a,
1021 I: Invariants,
1022 {
1023 /// Casts this pointer-to-array into a slice.
1024 #[allow(clippy::wrong_self_convention)]
1025 pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
1026 let slice = self.as_inner().as_slice();
1027 // SAFETY: Note that, by post-condition on `PtrInner::as_slice`,
1028 // `slice` refers to the same byte range as `self.as_inner()`.
1029 //
1030 // 0. Thus, `slice` conforms to the aliasing invariant of
1031 // `I::Aliasing` because `self` does.
1032 // 1. By the above lemma, `slice` conforms to the alignment
1033 // invariant of `I::Alignment` because `self` does.
1034 // 2. Since `[T; N]` and `[T]` have the same bit validity [1][2],
1035 // and since `self` and the returned `Ptr` have the same validity
1036 // invariant, neither `self` nor the returned `Ptr` can be used
1037 // to write a value to the referent which violates the other's
1038 // validity invariant.
1039 //
1040 // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout:
1041 //
1042 // An array of `[T; N]` has a size of `size_of::<T>() * N` and the
1043 // same alignment of `T`. Arrays are laid out so that the
1044 // zero-based `nth` element of the array is offset from the start
1045 // of the array by `n * size_of::<T>()` bytes.
1046 //
1047 // ...
1048 //
1049 // Slices have the same layout as the section of the array they
1050 // slice.
1051 //
1052 // [2] Per https://doc.rust-lang.org/1.81.0/reference/types/array.html#array-types:
1053 //
1054 // All elements of arrays are always initialized
1055 unsafe { Ptr::from_inner(slice) }
1056 }
1057 }
1058
1059 /// For caller convenience, these methods are generic over alignment
1060 /// invariant. In practice, the referent is always well-aligned, because the
1061 /// alignment of `[u8]` is 1.
1062 impl<'a, I> Ptr<'a, [u8], I>
1063 where
1064 I: Invariants<Validity = Valid>,
1065 {
1066 /// Attempts to cast `self` to a `U` using the given cast type.
1067 ///
1068 /// If `U` is a slice DST and pointer metadata (`meta`) is provided,
1069 /// then the cast will only succeed if it would produce an object with
1070 /// the given metadata.
1071 ///
1072 /// Returns `None` if the resulting `U` would be invalidly-aligned, if
1073 /// no `U` can fit in `self`, or if the provided pointer metadata
1074 /// describes an invalid instance of `U`. On success, returns a pointer
1075 /// to the largest-possible `U` which fits in `self`.
1076 ///
1077 /// # Safety
1078 ///
1079 /// The caller may assume that this implementation is correct, and may
1080 /// rely on that assumption for the soundness of their code. In
1081 /// particular, the caller may assume that, if `try_cast_into` returns
1082 /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
1083 /// non-overlapping byte ranges within `self`, and that `ptr` and
1084 /// `remainder` entirely cover `self`. Finally:
1085 /// - If this is a prefix cast, `ptr` has the same address as `self`.
1086 /// - If this is a suffix cast, `remainder` has the same address as
1087 /// `self`.
1088 #[inline(always)]
1089 pub(crate) fn try_cast_into<U, R>(
1090 self,
1091 cast_type: CastType,
1092 meta: Option<U::PointerMetadata>,
1093 ) -> Result<
1094 (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
1095 CastError<Self, U>,
1096 >
1097 where
1098 I::Aliasing: Reference,
1099 U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1100 {
1101 let (inner, remainder) =
1102 self.as_inner().try_cast_into(cast_type, meta).map_err(|err| {
1103 err.map_src(|inner|
1104 // SAFETY: `PtrInner::try_cast_into` promises to return its
1105 // original argument on error, which was originally produced
1106 // by `self.as_inner()`, which is guaranteed to satisfy
1107 // `Ptr`'s invariants.
1108 unsafe { Ptr::from_inner(inner) })
1109 })?;
1110
1111 // SAFETY:
1112 // 0. Since `U: Read<I::Aliasing, _>`, either:
1113 // - `I::Aliasing` is `Exclusive`, in which case both `src` and
1114 // `ptr` conform to `Exclusive`
1115 // - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already
1116 // know that `[u8]: Immutable`). In this case, neither `U` nor
1117 // `[u8]` permit mutation, and so `Shared` aliasing is
1118 // satisfied.
1119 // 1. `ptr` conforms to the alignment invariant of `Aligned` because
1120 // it is derived from `try_cast_into`, which promises that the
1121 // object described by `target` is validly aligned for `U`.
1122 // 2. By trait bound, `self` - and thus `target` - is a bit-valid
1123 // `[u8]`. `Ptr<[u8], (_, _, Valid)>` and `Ptr<_, (_, _,
1124 // Initialized)>` have the same bit validity, and so neither
1125 // `self` nor `res` can be used to write a value to the referent
1126 // which violates the other's validity invariant.
1127 let res = unsafe { Ptr::from_inner(inner) };
1128
1129 // SAFETY:
1130 // 0. `self` and `remainder` both have the type `[u8]`. Thus, they
1131 // have `UnsafeCell`s at the same locations. Type casting does
1132 // not affect aliasing.
1133 // 1. `[u8]` has no alignment requirement.
1134 // 2. `self` has validity `Valid` and has type `[u8]`. Since
1135 // `remainder` references a subset of `self`'s referent, it is
1136 // also a bit-valid `[u8]`. Thus, neither `self` nor `remainder`
1137 // can be used to write a value to the referent which violates
1138 // the other's validity invariant.
1139 let remainder = unsafe { Ptr::from_inner(remainder) };
1140
1141 Ok((res, remainder))
1142 }
1143
1144 /// Attempts to cast `self` into a `U`, failing if all of the bytes of
1145 /// `self` cannot be treated as a `U`.
1146 ///
1147 /// In particular, this method fails if `self` is not validly-aligned
1148 /// for `U` or if `self`'s size is not a valid size for `U`.
1149 ///
1150 /// # Safety
1151 ///
1152 /// On success, the caller may assume that the returned pointer
1153 /// references the same byte range as `self`.
1154 #[allow(unused)]
1155 #[inline(always)]
1156 pub(crate) fn try_cast_into_no_leftover<U, R>(
1157 self,
1158 meta: Option<U::PointerMetadata>,
1159 ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
1160 where
1161 I::Aliasing: Reference,
1162 U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1163 [u8]: Read<I::Aliasing, R>,
1164 {
1165 // SAFETY: The provided closure returns the only copy of `slf`.
1166 unsafe {
1167 self.try_with_unchecked(|slf| match slf.try_cast_into(CastType::Prefix, meta) {
1168 Ok((slf, remainder)) => {
1169 if remainder.len() == 0 {
1170 Ok(slf)
1171 } else {
1172 Err(CastError::Size(SizeError::<_, U>::new(())))
1173 }
1174 }
1175 Err(err) => Err(err.map_src(|_slf| ())),
1176 })
1177 }
1178 }
1179 }
1180
1181 impl<'a, T, I> Ptr<'a, UnsafeCell<T>, I>
1182 where
1183 T: 'a + ?Sized,
1184 I: Invariants<Aliasing = Exclusive>,
1185 {
1186 /// Converts this `Ptr` into a pointer to the underlying data.
1187 ///
1188 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1189 /// guarantees that we possess the only reference.
1190 ///
1191 /// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
1192 ///
1193 /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
1194 #[must_use]
1195 #[inline(always)]
1196 pub fn get_mut(self) -> Ptr<'a, T, I> {
1197 // SAFETY: As described below, `UnsafeCell<T>` has the same size
1198 // as `T: ?Sized` (same static size or same DST layout). Thus,
1199 // `*const UnsafeCell<T> as *const T` is a size-preserving cast.
1200 define_cast!(unsafe { Cast<T: ?Sized> = UnsafeCell<T> => T });
1201
1202 // SAFETY:
1203 // - Aliasing is `Exclusive`, and so we are not required to promise
1204 // anything about the locations of `UnsafeCell`s.
1205 // - `UnsafeCell<T>` has the same bit validity as `T` [1].
1206 // Technically the term "representation" doesn't guarantee this,
1207 // but the subsequent sentence in the documentation makes it clear
1208 // that this is the intention.
1209 //
1210 // By invariant on `Validity`, since `T` and `UnsafeCell<T>` have
1211 // the same bit validity, then the set of values which may appear
1212 // in the referent of a `Ptr<T, (_, _, V)>` is the same as the set
1213 // which may appear in the referent of a `Ptr<UnsafeCell<T>, (_,
1214 // _, V)>`. Thus, neither `self` nor `ptr` may be used to write a
1215 // value to the referent which would violate the other's validity
1216 // invariant.
1217 //
1218 // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1219 //
1220 // `UnsafeCell<T>` has the same in-memory representation as its
1221 // inner type `T`. A consequence of this guarantee is that it is
1222 // possible to convert between `T` and `UnsafeCell<T>`.
1223 let ptr = unsafe { self.project_transmute_unchecked::<_, _, Cast>() };
1224
1225 // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
1226 // and so if `self` is guaranteed to be aligned, then so is the
1227 // returned `Ptr`.
1228 //
1229 // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1230 //
1231 // `UnsafeCell<T>` has the same in-memory representation as
1232 // its inner type `T`. A consequence of this guarantee is that
1233 // it is possible to convert between `T` and `UnsafeCell<T>`.
1234 let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
1235 ptr.unify_invariants()
1236 }
1237 }
1238}
1239
1240/// Projections through the referent.
1241mod _project {
1242 use super::*;
1243
1244 impl<'a, T, I> Ptr<'a, [T], I>
1245 where
1246 T: 'a,
1247 I: Invariants,
1248 I::Aliasing: Reference,
1249 {
1250 /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
1251 pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
1252 // SAFETY:
1253 // 0. `elem` conforms to the aliasing invariant of `I::Aliasing`
1254 // because projection does not impact the aliasing invariant.
1255 // 1. `elem`, conditionally, conforms to the validity invariant of
1256 // `I::Alignment`. If `elem` is projected from data well-aligned
1257 // for `[T]`, `elem` will be valid for `T`.
1258 // 2. `elem` conforms to the validity invariant of `I::Validity`.
1259 // Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout:
1260 //
1261 // Slices have the same layout as the section of the array they
1262 // slice.
1263 //
1264 // Arrays are laid out so that the zero-based `nth` element of
1265 // the array is offset from the start of the array by `n *
1266 // size_of::<T>()` bytes. Thus, `elem` addresses a valid `T`
1267 // within the slice. Since `self` satisfies `I::Validity`, `elem`
1268 // also satisfies `I::Validity`.
1269 self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) })
1270 }
1271 }
1272
1273 #[allow(clippy::needless_lifetimes)]
1274 impl<'a, T, I> Ptr<'a, T, I>
1275 where
1276 T: 'a + ?Sized + KnownLayout<PointerMetadata = usize>,
1277 I: Invariants,
1278 {
1279 /// The number of slice elements in the object referenced by `self`.
1280 pub(crate) fn len(&self) -> usize {
1281 self.as_inner().meta().get()
1282 }
1283 }
1284}
1285
1286#[cfg(test)]
1287mod tests {
1288 use core::mem::{self, MaybeUninit};
1289
1290 use super::*;
1291 #[allow(unused)] // Needed on our MSRV, but considered unused on later toolchains.
1292 use crate::util::AsAddress;
1293 use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
1294
1295 mod test_ptr_try_cast_into_soundness {
1296 use super::*;
1297
1298 // This test is designed so that if `Ptr::try_cast_into_xxx` are
1299 // buggy, it will manifest as unsoundness that Miri can detect.
1300
1301 // - If `size_of::<T>() == 0`, `N == 4`
1302 // - Else, `N == 4 * size_of::<T>()`
1303 //
1304 // Each test will be run for each metadata in `metas`.
1305 fn test<T, I, const N: usize>(metas: I)
1306 where
1307 T: ?Sized + KnownLayout + Immutable + FromBytes,
1308 I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
1309 {
1310 let mut bytes = [MaybeUninit::<u8>::uninit(); N];
1311 let initialized = [MaybeUninit::new(0u8); N];
1312 for start in 0..=bytes.len() {
1313 for end in start..=bytes.len() {
1314 // Set all bytes to uninitialized other than those in
1315 // the range we're going to pass to `try_cast_from`.
1316 // This allows Miri to detect out-of-bounds reads
1317 // because they read uninitialized memory. Without this,
1318 // some out-of-bounds reads would still be in-bounds of
1319 // `bytes`, and so might spuriously be accepted.
1320 bytes = [MaybeUninit::<u8>::uninit(); N];
1321 let bytes = &mut bytes[start..end];
1322 // Initialize only the byte range we're going to pass to
1323 // `try_cast_from`.
1324 bytes.copy_from_slice(&initialized[start..end]);
1325
1326 let bytes = {
1327 let bytes: *const [MaybeUninit<u8>] = bytes;
1328 #[allow(clippy::as_conversions)]
1329 let bytes = bytes as *const [u8];
1330 // SAFETY: We just initialized these bytes to valid
1331 // `u8`s.
1332 unsafe { &*bytes }
1333 };
1334
1335 // SAFETY: The bytes in `slf` must be initialized.
1336 unsafe fn validate_and_get_len<
1337 T: ?Sized + KnownLayout + FromBytes + Immutable,
1338 >(
1339 slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
1340 ) -> usize {
1341 let t = slf.recall_validity().as_ref();
1342
1343 let bytes = {
1344 let len = mem::size_of_val(t);
1345 let t: *const T = t;
1346 // SAFETY:
1347 // - We know `t`'s bytes are all initialized
1348 // because we just read it from `slf`, which
1349 // points to an initialized range of bytes. If
1350 // there's a bug and this doesn't hold, then
1351 // that's exactly what we're hoping Miri will
1352 // catch!
1353 // - Since `T: FromBytes`, `T` doesn't contain
1354 // any `UnsafeCell`s, so it's okay for `t: T`
1355 // and a `&[u8]` to the same memory to be
1356 // alive concurrently.
1357 unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
1358 };
1359
1360 // This assertion ensures that `t`'s bytes are read
1361 // and compared to another value, which in turn
1362 // ensures that Miri gets a chance to notice if any
1363 // of `t`'s bytes are uninitialized, which they
1364 // shouldn't be (see the comment above).
1365 assert_eq!(bytes, vec![0u8; bytes.len()]);
1366
1367 mem::size_of_val(t)
1368 }
1369
1370 for meta in metas.clone().into_iter() {
1371 for cast_type in [CastType::Prefix, CastType::Suffix] {
1372 if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
1373 .try_cast_into::<T, BecauseImmutable>(cast_type, meta)
1374 {
1375 // SAFETY: All bytes in `bytes` have been
1376 // initialized.
1377 let len = unsafe { validate_and_get_len(slf) };
1378 assert_eq!(remaining.len(), bytes.len() - len);
1379 #[allow(unstable_name_collisions)]
1380 let bytes_addr = bytes.as_ptr().addr();
1381 #[allow(unstable_name_collisions)]
1382 let remaining_addr = remaining.as_inner().as_ptr().addr();
1383 match cast_type {
1384 CastType::Prefix => {
1385 assert_eq!(remaining_addr, bytes_addr + len)
1386 }
1387 CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
1388 }
1389
1390 if let Some(want) = meta {
1391 let got =
1392 KnownLayout::pointer_to_metadata(slf.as_inner().as_ptr());
1393 assert_eq!(got, want);
1394 }
1395 }
1396 }
1397
1398 if let Ok(slf) = Ptr::from_ref(bytes)
1399 .try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
1400 {
1401 // SAFETY: All bytes in `bytes` have been
1402 // initialized.
1403 let len = unsafe { validate_and_get_len(slf) };
1404 assert_eq!(len, bytes.len());
1405
1406 if let Some(want) = meta {
1407 let got = KnownLayout::pointer_to_metadata(slf.as_inner().as_ptr());
1408 assert_eq!(got, want);
1409 }
1410 }
1411 }
1412 }
1413 }
1414 }
1415
1416 #[derive(FromBytes, KnownLayout, Immutable)]
1417 #[repr(C)]
1418 struct SliceDst<T> {
1419 a: u8,
1420 trailing: [T],
1421 }
1422
1423 // Each test case becomes its own `#[test]` function. We do this because
1424 // this test in particular takes far, far longer to execute under Miri
1425 // than all of our other tests combined. Previously, we had these
1426 // execute sequentially in a single test function. We run Miri tests in
1427 // parallel in CI, but this test being sequential meant that most of
1428 // that parallelism was wasted, as all other tests would finish in a
1429 // fraction of the total execution time, leaving this test to execute on
1430 // a single thread for the remainder of the test. By putting each test
1431 // case in its own function, we permit better use of available
1432 // parallelism.
1433 macro_rules! test {
1434 ($test_name:ident: $ty:ty) => {
1435 #[test]
1436 #[allow(non_snake_case)]
1437 fn $test_name() {
1438 const S: usize = core::mem::size_of::<$ty>();
1439 const N: usize = if S == 0 { 4 } else { S * 4 };
1440 test::<$ty, _, N>([None]);
1441
1442 // If `$ty` is a ZST, then we can't pass `None` as the
1443 // pointer metadata, or else computing the correct trailing
1444 // slice length will panic.
1445 if S == 0 {
1446 test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
1447 test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
1448 } else {
1449 test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1450 test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1451 }
1452 }
1453 };
1454 ($ty:ident) => {
1455 test!($ty: $ty);
1456 };
1457 ($($ty:ident),*) => { $(test!($ty);)* }
1458 }
1459
1460 test!(empty_tuple: ());
1461 test!(u8, u16, u32, u64, u128, usize, AU64);
1462 test!(i8, i16, i32, i64, i128, isize);
1463 test!(f32, f64);
1464 }
1465
1466 #[test]
1467 fn test_try_cast_into_explicit_count() {
1468 macro_rules! test {
1469 ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
1470 let bytes = [0u8; $bytes];
1471 let ptr = Ptr::from_ref(&bytes[..]);
1472 let res =
1473 ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
1474 if let Some(expect) = $expect {
1475 let (ptr, _) = res.unwrap();
1476 assert_eq!(KnownLayout::pointer_to_metadata(ptr.as_inner().as_ptr()), expect);
1477 } else {
1478 let _ = res.unwrap_err();
1479 }
1480 }};
1481 }
1482
1483 #[derive(KnownLayout, Immutable)]
1484 #[repr(C)]
1485 struct ZstDst {
1486 u: [u8; 8],
1487 slc: [()],
1488 }
1489
1490 test!(ZstDst, 8, 0, Some(0));
1491 test!(ZstDst, 7, 0, None);
1492
1493 test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
1494 test!(ZstDst, 7, usize::MAX, None);
1495
1496 #[derive(KnownLayout, Immutable)]
1497 #[repr(C)]
1498 struct Dst {
1499 u: [u8; 8],
1500 slc: [u8],
1501 }
1502
1503 test!(Dst, 8, 0, Some(0));
1504 test!(Dst, 7, 0, None);
1505
1506 test!(Dst, 9, 1, Some(1));
1507 test!(Dst, 8, 1, None);
1508
1509 // If we didn't properly check for overflow, this would cause the
1510 // metadata to overflow to 0, and thus the cast would spuriously
1511 // succeed.
1512 test!(Dst, 8, usize::MAX - 8 + 1, None);
1513 }
1514
1515 #[test]
1516 fn test_try_cast_into_no_leftover_restores_original_slice() {
1517 let bytes = [0u8; 4];
1518 let ptr = Ptr::from_ref(&bytes[..]);
1519 let res = ptr.try_cast_into_no_leftover::<[u8; 2], BecauseImmutable>(None);
1520 match res {
1521 Ok(_) => panic!("should have failed due to leftover bytes"),
1522 Err(CastError::Size(e)) => {
1523 assert_eq!(e.into_src().len(), 4, "Should return original slice length");
1524 }
1525 Err(e) => panic!("wrong error type: {:?}", e),
1526 }
1527 }
1528}