spin/rw_lock.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
use core::cell::UnsafeCell;
use core::default::Default;
use core::fmt;
use core::marker::PhantomData;
use core::mem;
use core::ops::{Deref, DerefMut};
use core::ptr::NonNull;
use core::sync::atomic::{spin_loop_hint as cpu_relax, AtomicUsize, Ordering};
/// A reader-writer lock
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to
/// allow concurrent access through readers. The RAII guards returned from the
/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
/// to allow access to the contained of the lock.
///
/// An [`RwLockUpgradeableGuard`](RwLockUpgradeableGuard) can be upgraded to a
/// writable guard through the [`RwLockUpgradeableGuard::upgrade`](RwLockUpgradeableGuard::upgrade)
/// [`RwLockUpgradeableGuard::try_upgrade`](RwLockUpgradeableGuard::try_upgrade) functions.
/// Writable or upgradeable guards can be downgraded through their respective `downgrade`
/// functions.
///
/// Based on Facebook's
/// [`folly/RWSpinLock.h`](https://github.com/facebook/folly/blob/a0394d84f2d5c3e50ebfd0566f9d3acb52cfab5a/folly/synchronization/RWSpinLock.h).
/// This implementation is unfair to writers - if the lock always has readers, then no writers will
/// ever get a chance. Using an upgradeable lock guard can *somewhat* alleviate this issue as no
/// new readers are allowed when an upgradeable guard is held, but upgradeable guards can be taken
/// when there are existing readers. However if the lock is that highly contended and writes are
/// crucial then this implementation may be a poor choice.
///
/// # Examples
///
/// ```
/// use spin;
///
/// let lock = spin::RwLock::new(5);
///
/// // many reader locks can be held at once
/// {
/// let r1 = lock.read();
/// let r2 = lock.read();
/// assert_eq!(*r1, 5);
/// assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
/// let mut w = lock.write();
/// *w += 1;
/// assert_eq!(*w, 6);
/// } // write lock is dropped here
/// ```
pub struct RwLock<T: ?Sized> {
lock: AtomicUsize,
data: UnsafeCell<T>,
}
const READER: usize = 1 << 2;
const UPGRADED: usize = 1 << 1;
const WRITER: usize = 1;
/// A guard from which the protected data can be read
///
/// When the guard falls out of scope it will decrement the read count,
/// potentially releasing the lock.
#[derive(Debug)]
pub struct RwLockReadGuard<'a, T: 'a + ?Sized> {
lock: &'a AtomicUsize,
data: NonNull<T>,
}
/// A guard to which the protected data can be written
///
/// When the guard falls out of scope it will release the lock.
#[derive(Debug)]
pub struct RwLockWriteGuard<'a, T: 'a + ?Sized> {
lock: &'a AtomicUsize,
data: NonNull<T>,
#[doc(hidden)]
_invariant: PhantomData<&'a mut T>,
}
/// A guard from which the protected data can be read, and can be upgraded
/// to a writable guard if needed
///
/// No writers or other upgradeable guards can exist while this is in scope. New reader
/// creation is prevented (to alleviate writer starvation) but there may be existing readers
/// when the lock is acquired.
///
/// When the guard falls out of scope it will release the lock.
#[derive(Debug)]
pub struct RwLockUpgradeableGuard<'a, T: 'a + ?Sized> {
lock: &'a AtomicUsize,
data: NonNull<T>,
#[doc(hidden)]
_invariant: PhantomData<&'a mut T>,
}
// Same unsafe impls as `std::sync::RwLock`
unsafe impl<T: ?Sized + Send> Send for RwLock<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for RwLock<T> {}
impl<T> RwLock<T> {
/// Creates a new spinlock wrapping the supplied data.
///
/// May be used statically:
///
/// ```
/// use spin;
///
/// static RW_LOCK: spin::RwLock<()> = spin::RwLock::new(());
///
/// fn demo() {
/// let lock = RW_LOCK.read();
/// // do something with lock
/// drop(lock);
/// }
/// ```
#[inline]
pub const fn new(user_data: T) -> RwLock<T> {
RwLock {
lock: AtomicUsize::new(0),
data: UnsafeCell::new(user_data),
}
}
/// Consumes this `RwLock`, returning the underlying data.
#[inline]
pub fn into_inner(self) -> T {
// We know statically that there are no outstanding references to
// `self` so there's no need to lock.
let RwLock { data, .. } = self;
data.into_inner()
}
}
impl<T: ?Sized> RwLock<T> {
/// Locks this rwlock with shared read access, blocking the current thread
/// until it can be acquired.
///
/// The calling thread will be blocked until there are no more writers which
/// hold the lock. There may be other readers currently inside the lock when
/// this method returns. This method does not provide any guarantees with
/// respect to the ordering of whether contentious readers or writers will
/// acquire the lock first.
///
/// Returns an RAII guard which will release this thread's shared access
/// once it is dropped.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// {
/// let mut data = mylock.read();
/// // The lock is now locked and the data can be read
/// println!("{}", *data);
/// // The lock is dropped
/// }
/// ```
#[inline]
pub fn read(&self) -> RwLockReadGuard<T> {
loop {
match self.try_read() {
Some(guard) => return guard,
None => cpu_relax(),
}
}
}
/// Attempt to acquire this lock with shared read access.
///
/// This function will never block and will return immediately if `read`
/// would otherwise succeed. Returns `Some` of an RAII guard which will
/// release the shared access of this thread when dropped, or `None` if the
/// access could not be granted. This method does not provide any
/// guarantees with respect to the ordering of whether contentious readers
/// or writers will acquire the lock first.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// {
/// match mylock.try_read() {
/// Some(data) => {
/// // The lock is now locked and the data can be read
/// println!("{}", *data);
/// // The lock is dropped
/// },
/// None => (), // no cigar
/// };
/// }
/// ```
#[inline]
pub fn try_read(&self) -> Option<RwLockReadGuard<T>> {
let value = self.lock.fetch_add(READER, Ordering::Acquire);
// We check the UPGRADED bit here so that new readers are prevented when an UPGRADED lock is held.
// This helps reduce writer starvation.
if value & (WRITER | UPGRADED) != 0 {
// Lock is taken, undo.
self.lock.fetch_sub(READER, Ordering::Release);
None
} else {
Some(RwLockReadGuard {
lock: &self.lock,
data: unsafe { NonNull::new_unchecked(self.data.get()) },
})
}
}
/// Force decrement the reader count.
///
/// This is *extremely* unsafe if there are outstanding `RwLockReadGuard`s
/// live, or if called more times than `read` has been called, but can be
/// useful in FFI contexts where the caller doesn't know how to deal with
/// RAII. The underlying atomic operation uses `Ordering::Release`.
#[inline]
pub unsafe fn force_read_decrement(&self) {
debug_assert!(self.lock.load(Ordering::Relaxed) & !WRITER > 0);
self.lock.fetch_sub(READER, Ordering::Release);
}
/// Force unlock exclusive write access.
///
/// This is *extremely* unsafe if there are outstanding `RwLockWriteGuard`s
/// live, or if called when there are current readers, but can be useful in
/// FFI contexts where the caller doesn't know how to deal with RAII. The
/// underlying atomic operation uses `Ordering::Release`.
#[inline]
pub unsafe fn force_write_unlock(&self) {
debug_assert_eq!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED), 0);
self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
}
#[inline(always)]
fn try_write_internal(&self, strong: bool) -> Option<RwLockWriteGuard<T>> {
if compare_exchange(
&self.lock,
0,
WRITER,
Ordering::Acquire,
Ordering::Relaxed,
strong,
)
.is_ok()
{
Some(RwLockWriteGuard {
lock: &self.lock,
data: unsafe { NonNull::new_unchecked(self.data.get()) },
_invariant: PhantomData,
})
} else {
None
}
}
/// Lock this rwlock with exclusive write access, blocking the current
/// thread until it can be acquired.
///
/// This function will not return while other writers or other readers
/// currently have access to the lock.
///
/// Returns an RAII guard which will drop the write access of this rwlock
/// when dropped.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// {
/// let mut data = mylock.write();
/// // The lock is now locked and the data can be written
/// *data += 1;
/// // The lock is dropped
/// }
/// ```
#[inline]
pub fn write(&self) -> RwLockWriteGuard<T> {
loop {
match self.try_write_internal(false) {
Some(guard) => return guard,
None => cpu_relax(),
}
}
}
/// Attempt to lock this rwlock with exclusive write access.
///
/// This function does not ever block, and it will return `None` if a call
/// to `write` would otherwise block. If successful, an RAII guard is
/// returned.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// {
/// match mylock.try_write() {
/// Some(mut data) => {
/// // The lock is now locked and the data can be written
/// *data += 1;
/// // The lock is implicitly dropped
/// },
/// None => (), // no cigar
/// };
/// }
/// ```
#[inline]
pub fn try_write(&self) -> Option<RwLockWriteGuard<T>> {
self.try_write_internal(true)
}
/// Obtain a readable lock guard that can later be upgraded to a writable lock guard.
/// Upgrades can be done through the [`RwLockUpgradeableGuard::upgrade`](RwLockUpgradeableGuard::upgrade) method.
#[inline]
pub fn upgradeable_read(&self) -> RwLockUpgradeableGuard<T> {
loop {
match self.try_upgradeable_read() {
Some(guard) => return guard,
None => cpu_relax(),
}
}
}
/// Tries to obtain an upgradeable lock guard.
#[inline]
pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradeableGuard<T>> {
if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 {
Some(RwLockUpgradeableGuard {
lock: &self.lock,
data: unsafe { NonNull::new_unchecked(self.data.get()) },
_invariant: PhantomData,
})
} else {
// We can't unflip the UPGRADED bit back just yet as there is another upgradeable or write lock.
// When they unlock, they will clear the bit.
None
}
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for RwLock<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try_read() {
Some(guard) => write!(f, "RwLock {{ data: ")
.and_then(|()| (&*guard).fmt(f))
.and_then(|()| write!(f, "}}")),
None => write!(f, "RwLock {{ <locked> }}"),
}
}
}
impl<T: ?Sized + Default> Default for RwLock<T> {
fn default() -> RwLock<T> {
RwLock::new(Default::default())
}
}
impl<'rwlock, T: ?Sized> RwLockUpgradeableGuard<'rwlock, T> {
#[inline(always)]
fn try_upgrade_internal(self, strong: bool) -> Result<RwLockWriteGuard<'rwlock, T>, Self> {
if compare_exchange(
&self.lock,
UPGRADED,
WRITER,
Ordering::Acquire,
Ordering::Relaxed,
strong,
)
.is_ok()
{
// Upgrade successful
let out = Ok(RwLockWriteGuard {
lock: &self.lock,
data: self.data,
_invariant: PhantomData,
});
// Forget the old guard so its destructor doesn't run
mem::forget(self);
out
} else {
Err(self)
}
}
/// Upgrades an upgradeable lock guard to a writable lock guard.
///
/// ```
/// let mylock = spin::RwLock::new(0);
///
/// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
/// let writable = upgradeable.upgrade();
/// ```
#[inline]
pub fn upgrade(mut self) -> RwLockWriteGuard<'rwlock, T> {
loop {
self = match self.try_upgrade_internal(false) {
Ok(guard) => return guard,
Err(e) => e,
};
cpu_relax();
}
}
/// Tries to upgrade an upgradeable lock guard to a writable lock guard.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
///
/// match upgradeable.try_upgrade() {
/// Ok(writable) => /* upgrade successful - use writable lock guard */ (),
/// Err(upgradeable) => /* upgrade unsuccessful */ (),
/// };
/// ```
#[inline]
pub fn try_upgrade(self) -> Result<RwLockWriteGuard<'rwlock, T>, Self> {
self.try_upgrade_internal(true)
}
#[inline]
/// Downgrades the upgradeable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
///
/// ```
/// let mylock = spin::RwLock::new(1);
///
/// let upgradeable = mylock.upgradeable_read();
/// assert!(mylock.try_read().is_none());
/// assert_eq!(*upgradeable, 1);
///
/// let readable = upgradeable.downgrade(); // This is guaranteed not to spin
/// assert!(mylock.try_read().is_some());
/// assert_eq!(*readable, 1);
/// ```
pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
// Reserve the read guard for ourselves
self.lock.fetch_add(READER, Ordering::Acquire);
RwLockReadGuard {
lock: &self.lock,
data: self.data,
}
// Dropping self removes the UPGRADED bit
}
}
impl<'rwlock, T: ?Sized> RwLockWriteGuard<'rwlock, T> {
/// Downgrades the writable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
///
/// ```
/// let mylock = spin::RwLock::new(0);
///
/// let mut writable = mylock.write();
/// *writable = 1;
///
/// let readable = writable.downgrade(); // This is guaranteed not to spin
/// # let readable_2 = mylock.try_read().unwrap();
/// assert_eq!(*readable, 1);
/// ```
#[inline]
pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
// Reserve the read guard for ourselves
self.lock.fetch_add(READER, Ordering::Acquire);
RwLockReadGuard {
lock: &self.lock,
data: self.data,
}
// Dropping self removes the WRITER bit
}
}
impl<'rwlock, T: ?Sized> Deref for RwLockReadGuard<'rwlock, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { self.data.as_ref() }
}
}
impl<'rwlock, T: ?Sized> Deref for RwLockUpgradeableGuard<'rwlock, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { self.data.as_ref() }
}
}
impl<'rwlock, T: ?Sized> Deref for RwLockWriteGuard<'rwlock, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { self.data.as_ref() }
}
}
impl<'rwlock, T: ?Sized> DerefMut for RwLockWriteGuard<'rwlock, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { self.data.as_mut() }
}
}
impl<'rwlock, T: ?Sized> Drop for RwLockReadGuard<'rwlock, T> {
fn drop(&mut self) {
debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0);
self.lock.fetch_sub(READER, Ordering::Release);
}
}
impl<'rwlock, T: ?Sized> Drop for RwLockUpgradeableGuard<'rwlock, T> {
fn drop(&mut self) {
debug_assert_eq!(
self.lock.load(Ordering::Relaxed) & (WRITER | UPGRADED),
UPGRADED
);
self.lock.fetch_sub(UPGRADED, Ordering::AcqRel);
}
}
impl<'rwlock, T: ?Sized> Drop for RwLockWriteGuard<'rwlock, T> {
fn drop(&mut self) {
debug_assert_eq!(self.lock.load(Ordering::Relaxed) & WRITER, WRITER);
// Writer is responsible for clearing both WRITER and UPGRADED bits.
// The UPGRADED bit may be set if an upgradeable lock attempts an upgrade while this lock is held.
self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
}
}
#[inline(always)]
fn compare_exchange(
atomic: &AtomicUsize,
current: usize,
new: usize,
success: Ordering,
failure: Ordering,
strong: bool,
) -> Result<usize, usize> {
if strong {
atomic.compare_exchange(current, new, success, failure)
} else {
atomic.compare_exchange_weak(current, new, success, failure)
}
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
use super::*;
#[derive(Eq, PartialEq, Debug)]
struct NonCopy(i32);
#[test]
fn smoke() {
let l = RwLock::new(());
drop(l.read());
drop(l.write());
drop((l.read(), l.read()));
drop(l.write());
}
// TODO: needs RNG
//#[test]
//fn frob() {
// static R: RwLock = RwLock::new();
// const N: usize = 10;
// const M: usize = 1000;
//
// let (tx, rx) = channel::<()>();
// for _ in 0..N {
// let tx = tx.clone();
// thread::spawn(move|| {
// let mut rng = rand::thread_rng();
// for _ in 0..M {
// if rng.gen_weighted_bool(N) {
// drop(R.write());
// } else {
// drop(R.read());
// }
// }
// drop(tx);
// });
// }
// drop(tx);
// let _ = rx.recv();
// unsafe { R.destroy(); }
//}
#[test]
fn test_rw_arc() {
let arc = Arc::new(RwLock::new(0));
let arc2 = arc.clone();
let (tx, rx) = channel();
thread::spawn(move || {
let mut lock = arc2.write();
for _ in 0..10 {
let tmp = *lock;
*lock = -1;
thread::yield_now();
*lock = tmp + 1;
}
tx.send(()).unwrap();
});
// Readers try to catch the writer in the act
let mut children = Vec::new();
for _ in 0..5 {
let arc3 = arc.clone();
children.push(thread::spawn(move || {
let lock = arc3.read();
assert!(*lock >= 0);
}));
}
// Wait for children to pass their asserts
for r in children {
assert!(r.join().is_ok());
}
// Wait for writer to finish
rx.recv().unwrap();
let lock = arc.read();
assert_eq!(*lock, 10);
}
#[test]
fn test_rw_access_in_unwind() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _ = thread::spawn(move || -> () {
struct Unwinder {
i: Arc<RwLock<isize>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
let mut lock = self.i.write();
*lock += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
})
.join();
let lock = arc.read();
assert_eq!(*lock, 2);
}
#[test]
fn test_rwlock_unsized() {
let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
{
let b = &mut *rw.write();
b[0] = 4;
b[2] = 5;
}
let comp: &[i32] = &[4, 2, 5];
assert_eq!(&*rw.read(), comp);
}
#[test]
fn test_rwlock_try_write() {
use std::mem::drop;
let lock = RwLock::new(0isize);
let read_guard = lock.read();
let write_result = lock.try_write();
match write_result {
None => (),
Some(_) => assert!(
false,
"try_write should not succeed while read_guard is in scope"
),
}
drop(read_guard);
}
#[test]
fn test_rw_try_read() {
let m = RwLock::new(0);
mem::forget(m.write());
assert!(m.try_read().is_none());
}
#[test]
fn test_into_inner() {
let m = RwLock::new(NonCopy(10));
assert_eq!(m.into_inner(), NonCopy(10));
}
#[test]
fn test_into_inner_drop() {
struct Foo(Arc<AtomicUsize>);
impl Drop for Foo {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::SeqCst);
}
}
let num_drops = Arc::new(AtomicUsize::new(0));
let m = RwLock::new(Foo(num_drops.clone()));
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
{
let _inner = m.into_inner();
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
}
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
}
#[test]
fn test_force_read_decrement() {
let m = RwLock::new(());
::std::mem::forget(m.read());
::std::mem::forget(m.read());
::std::mem::forget(m.read());
assert!(m.try_write().is_none());
unsafe {
m.force_read_decrement();
m.force_read_decrement();
}
assert!(m.try_write().is_none());
unsafe {
m.force_read_decrement();
}
assert!(m.try_write().is_some());
}
#[test]
fn test_force_write_unlock() {
let m = RwLock::new(());
::std::mem::forget(m.write());
assert!(m.try_read().is_none());
unsafe {
m.force_write_unlock();
}
assert!(m.try_read().is_some());
}
#[test]
fn test_upgrade_downgrade() {
let m = RwLock::new(());
{
let _r = m.read();
let upg = m.try_upgradeable_read().unwrap();
assert!(m.try_read().is_none());
assert!(m.try_write().is_none());
assert!(upg.try_upgrade().is_err());
}
{
let w = m.write();
assert!(m.try_upgradeable_read().is_none());
let _r = w.downgrade();
assert!(m.try_upgradeable_read().is_some());
assert!(m.try_read().is_some());
assert!(m.try_write().is_none());
}
{
let _u = m.upgradeable_read();
assert!(m.try_upgradeable_read().is_none());
}
assert!(m.try_upgradeable_read().unwrap().try_upgrade().is_ok());
}
}