sharded_slab/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
//! A lock-free concurrent slab.
//!
//! Slabs provide pre-allocated storage for many instances of a single data
//! type. When a large number of values of a single type are required,
//! this can be more efficient than allocating each item individually. Since the
//! allocated items are the same size, memory fragmentation is reduced, and
//! creating and removing new items can be very cheap.
//!
//! This crate implements a lock-free concurrent slab, indexed by `usize`s.
//!
//! ## Usage
//!
//! First, add this to your `Cargo.toml`:
//!
//! ```toml
//! sharded-slab = "0.1.1"
//! ```
//!
//! This crate provides two types, [`Slab`] and [`Pool`], which provide
//! slightly different APIs for using a sharded slab.
//!
//! [`Slab`] implements a slab for _storing_ small types, sharing them between
//! threads, and accessing them by index. New entries are allocated by
//! [inserting] data, moving it in by value. Similarly, entries may be
//! deallocated by [taking] from the slab, moving the value out. This API is
//! similar to a `Vec<Option<T>>`, but allowing lock-free concurrent insertion
//! and removal.
//!
//! In contrast, the [`Pool`] type provides an [object pool] style API for
//! _reusing storage_. Rather than constructing values and moving them into the
//! pool, as with [`Slab`], [allocating an entry][create] from the pool takes a
//! closure that's provided with a mutable reference to initialize the entry in
//! place. When entries are deallocated, they are [cleared] in place. Types
//! which own a heap allocation can be cleared by dropping any _data_ they
//! store, but retaining any previously-allocated capacity. This means that a
//! [`Pool`] may be used to reuse a set of existing heap allocations, reducing
//! allocator load.
//!
//! [inserting]: Slab::insert
//! [taking]: Slab::take
//! [create]: Pool::create
//! [cleared]: Clear
//! [object pool]: https://en.wikipedia.org/wiki/Object_pool_pattern
//!
//! # Examples
//!
//! Inserting an item into the slab, returning an index:
//! ```rust
//! # use sharded_slab::Slab;
//! let slab = Slab::new();
//!
//! let key = slab.insert("hello world").unwrap();
//! assert_eq!(slab.get(key).unwrap(), "hello world");
//! ```
//!
//! To share a slab across threads, it may be wrapped in an `Arc`:
//! ```rust
//! # use sharded_slab::Slab;
//! use std::sync::Arc;
//! let slab = Arc::new(Slab::new());
//!
//! let slab2 = slab.clone();
//! let thread2 = std::thread::spawn(move || {
//! let key = slab2.insert("hello from thread two").unwrap();
//! assert_eq!(slab2.get(key).unwrap(), "hello from thread two");
//! key
//! });
//!
//! let key1 = slab.insert("hello from thread one").unwrap();
//! assert_eq!(slab.get(key1).unwrap(), "hello from thread one");
//!
//! // Wait for thread 2 to complete.
//! let key2 = thread2.join().unwrap();
//!
//! // The item inserted by thread 2 remains in the slab.
//! assert_eq!(slab.get(key2).unwrap(), "hello from thread two");
//!```
//!
//! If items in the slab must be mutated, a `Mutex` or `RwLock` may be used for
//! each item, providing granular locking of items rather than of the slab:
//!
//! ```rust
//! # use sharded_slab::Slab;
//! use std::sync::{Arc, Mutex};
//! let slab = Arc::new(Slab::new());
//!
//! let key = slab.insert(Mutex::new(String::from("hello world"))).unwrap();
//!
//! let slab2 = slab.clone();
//! let thread2 = std::thread::spawn(move || {
//! let hello = slab2.get(key).expect("item missing");
//! let mut hello = hello.lock().expect("mutex poisoned");
//! *hello = String::from("hello everyone!");
//! });
//!
//! thread2.join().unwrap();
//!
//! let hello = slab.get(key).expect("item missing");
//! let mut hello = hello.lock().expect("mutex poisoned");
//! assert_eq!(hello.as_str(), "hello everyone!");
//! ```
//!
//! # Configuration
//!
//! For performance reasons, several values used by the slab are calculated as
//! constants. In order to allow users to tune the slab's parameters, we provide
//! a [`Config`] trait which defines these parameters as associated `consts`.
//! The `Slab` type is generic over a `C: Config` parameter.
//!
//! [`Config`]: trait.Config.html
//!
//! # Comparison with Similar Crates
//!
//! - [`slab`]: Carl Lerche's `slab` crate provides a slab implementation with a
//! similar API, implemented by storing all data in a single vector.
//!
//! Unlike `sharded_slab`, inserting and removing elements from the slab
//! requires mutable access. This means that if the slab is accessed
//! concurrently by multiple threads, it is necessary for it to be protected
//! by a `Mutex` or `RwLock`. Items may not be inserted or removed (or
//! accessed, if a `Mutex` is used) concurrently, even when they are
//! unrelated. In many cases, the lock can become a significant bottleneck. On
//! the other hand, this crate allows separate indices in the slab to be
//! accessed, inserted, and removed concurrently without requiring a global
//! lock. Therefore, when the slab is shared across multiple threads, this
//! crate offers significantly better performance than `slab`.
//!
//! However, the lock free slab introduces some additional constant-factor
//! overhead. This means that in use-cases where a slab is _not_ shared by
//! multiple threads and locking is not required, this crate will likely offer
//! slightly worse performance.
//!
//! In summary: `sharded-slab` offers significantly improved performance in
//! concurrent use-cases, while `slab` should be preferred in single-threaded
//! use-cases.
//!
//! [`slab`]: https://crates.io/crates/loom
//!
//! # Safety and Correctness
//!
//! Most implementations of lock-free data structures in Rust require some
//! amount of unsafe code, and this crate is not an exception. In order to catch
//! potential bugs in this unsafe code, we make use of [`loom`], a
//! permutation-testing tool for concurrent Rust programs. All `unsafe` blocks
//! this crate occur in accesses to `loom` `UnsafeCell`s. This means that when
//! those accesses occur in this crate's tests, `loom` will assert that they are
//! valid under the C11 memory model across multiple permutations of concurrent
//! executions of those tests.
//!
//! In order to guard against the [ABA problem][aba], this crate makes use of
//! _generational indices_. Each slot in the slab tracks a generation counter
//! which is incremented every time a value is inserted into that slot, and the
//! indices returned by [`Slab::insert`] include the generation of the slot when
//! the value was inserted, packed into the high-order bits of the index. This
//! ensures that if a value is inserted, removed, and a new value is inserted
//! into the same slot in the slab, the key returned by the first call to
//! `insert` will not map to the new value.
//!
//! Since a fixed number of bits are set aside to use for storing the generation
//! counter, the counter will wrap around after being incremented a number of
//! times. To avoid situations where a returned index lives long enough to see the
//! generation counter wrap around to the same value, it is good to be fairly
//! generous when configuring the allocation of index bits.
//!
//! [`loom`]: https://crates.io/crates/loom
//! [aba]: https://en.wikipedia.org/wiki/ABA_problem
//! [`Slab::insert`]: struct.Slab.html#method.insert
//!
//! # Performance
//!
//! These graphs were produced by [benchmarks] of the sharded slab implementation,
//! using the [`criterion`] crate.
//!
//! The first shows the results of a benchmark where an increasing number of
//! items are inserted and then removed into a slab concurrently by five
//! threads. It compares the performance of the sharded slab implementation
//! with a `RwLock<slab::Slab>`:
//!
//! <img width="1124" alt="Screen Shot 2019-10-01 at 5 09 49 PM" src="https://user-images.githubusercontent.com/2796466/66078398-cd6c9f80-e516-11e9-9923-0ed6292e8498.png">
//!
//! The second graph shows the results of a benchmark where an increasing
//! number of items are inserted and then removed by a _single_ thread. It
//! compares the performance of the sharded slab implementation with an
//! `RwLock<slab::Slab>` and a `mut slab::Slab`.
//!
//! <img width="925" alt="Screen Shot 2019-10-01 at 5 13 45 PM" src="https://user-images.githubusercontent.com/2796466/66078469-f0974f00-e516-11e9-95b5-f65f0aa7e494.png">
//!
//! These benchmarks demonstrate that, while the sharded approach introduces
//! a small constant-factor overhead, it offers significantly better
//! performance across concurrent accesses.
//!
//! [benchmarks]: https://github.com/hawkw/sharded-slab/blob/master/benches/bench.rs
//! [`criterion`]: https://crates.io/crates/criterion
//!
//! # Implementation Notes
//!
//! See [this page](crate::implementation) for details on this crate's design
//! and implementation.
//!
#![doc(html_root_url = "https://docs.rs/sharded-slab/0.1.4")]
#![warn(missing_debug_implementations, missing_docs)]
#![cfg_attr(docsrs, warn(rustdoc::broken_intra_doc_links))]
#[macro_use]
mod macros;
pub mod implementation;
pub mod pool;
pub(crate) mod cfg;
pub(crate) mod sync;
mod clear;
mod iter;
mod page;
mod shard;
mod tid;
pub use cfg::{Config, DefaultConfig};
pub use clear::Clear;
#[doc(inline)]
pub use pool::Pool;
pub(crate) use tid::Tid;
use cfg::CfgPrivate;
use shard::Shard;
use std::{fmt, marker::PhantomData, ptr, sync::Arc};
/// A sharded slab.
///
/// See the [crate-level documentation](crate) for details on using this type.
pub struct Slab<T, C: cfg::Config = DefaultConfig> {
shards: shard::Array<Option<T>, C>,
_cfg: PhantomData<C>,
}
/// A handle that allows access to an occupied entry in a [`Slab`].
///
/// While the guard exists, it indicates to the slab that the item the guard
/// references is currently being accessed. If the item is removed from the slab
/// while a guard exists, the removal will be deferred until all guards are
/// dropped.
pub struct Entry<'a, T, C: cfg::Config = DefaultConfig> {
inner: page::slot::Guard<Option<T>, C>,
value: ptr::NonNull<T>,
shard: &'a Shard<Option<T>, C>,
key: usize,
}
/// A handle to a vacant entry in a [`Slab`].
///
/// `VacantEntry` allows constructing values with the key that they will be
/// assigned to.
///
/// # Examples
///
/// ```
/// # use sharded_slab::Slab;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry().unwrap();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab.get(hello).unwrap().0);
/// assert_eq!("hello", slab.get(hello).unwrap().1);
/// ```
#[derive(Debug)]
pub struct VacantEntry<'a, T, C: cfg::Config = DefaultConfig> {
inner: page::slot::InitGuard<Option<T>, C>,
key: usize,
_lt: PhantomData<&'a ()>,
}
/// An owned reference to an occupied entry in a [`Slab`].
///
/// While the guard exists, it indicates to the slab that the item the guard
/// references is currently being accessed. If the item is removed from the slab
/// while the guard exists, the removal will be deferred until all guards are
/// dropped.
///
/// Unlike [`Entry`], which borrows the slab, an `OwnedEntry` clones the [`Arc`]
/// around the slab. Therefore, it keeps the slab from being dropped until all
/// such guards have been dropped. This means that an `OwnedEntry` may be held for
/// an arbitrary lifetime.
///
/// # Examples
///
/// ```
/// # use sharded_slab::Slab;
/// use std::sync::Arc;
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let value = slab.clone().get_owned(key).unwrap();
///
/// // Now, the original `Arc` clone of the slab may be dropped, but the
/// // returned `OwnedEntry` can still access the value.
/// assert_eq!(value, "hello world");
/// ```
///
/// Unlike [`Entry`], an `OwnedEntry` may be stored in a struct which must live
/// for the `'static` lifetime:
///
/// ```
/// # use sharded_slab::Slab;
/// use sharded_slab::OwnedEntry;
/// use std::sync::Arc;
///
/// pub struct MyStruct {
/// entry: OwnedEntry<&'static str>,
/// // ... other fields ...
/// }
///
/// // Suppose this is some arbitrary function which requires a value that
/// // lives for the 'static lifetime...
/// fn function_requiring_static<T: 'static>(t: &T) {
/// // ... do something extremely important and interesting ...
/// }
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let entry = slab.clone().get_owned(key).unwrap();
/// let my_struct = MyStruct {
/// entry,
/// // ...
/// };
///
/// // We can use `my_struct` anywhere where it is required to have the
/// // `'static` lifetime:
/// function_requiring_static(&my_struct);
/// ```
///
/// `OwnedEntry`s may be sent between threads:
///
/// ```
/// # use sharded_slab::Slab;
/// use std::{thread, sync::Arc};
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let value = slab.clone().get_owned(key).unwrap();
///
/// thread::spawn(move || {
/// assert_eq!(value, "hello world");
/// // ...
/// }).join().unwrap();
/// ```
///
/// [`get`]: Slab::get
/// [`Arc`]: std::sync::Arc
pub struct OwnedEntry<T, C = DefaultConfig>
where
C: cfg::Config,
{
inner: page::slot::Guard<Option<T>, C>,
value: ptr::NonNull<T>,
slab: Arc<Slab<T, C>>,
key: usize,
}
impl<T> Slab<T> {
/// Returns a new slab with the default configuration parameters.
pub fn new() -> Self {
Self::new_with_config()
}
/// Returns a new slab with the provided configuration parameters.
pub fn new_with_config<C: cfg::Config>() -> Slab<T, C> {
C::validate();
Slab {
shards: shard::Array::new(),
_cfg: PhantomData,
}
}
}
impl<T, C: cfg::Config> Slab<T, C> {
/// The number of bits in each index which are used by the slab.
///
/// If other data is packed into the `usize` indices returned by
/// [`Slab::insert`], user code is free to use any bits higher than the
/// `USED_BITS`-th bit freely.
///
/// This is determined by the [`Config`] type that configures the slab's
/// parameters. By default, all bits are used; this can be changed by
/// overriding the [`Config::RESERVED_BITS`][res] constant.
///
/// [res]: crate::Config#RESERVED_BITS
pub const USED_BITS: usize = C::USED_BITS;
/// Inserts a value into the slab, returning the integer index at which that
/// value was inserted. This index can then be used to access the entry.
///
/// If this function returns `None`, then the shard for the current thread
/// is full and no items can be added until some are removed, or the maximum
/// number of shards has been reached.
///
/// # Examples
/// ```rust
/// # use sharded_slab::Slab;
/// let slab = Slab::new();
///
/// let key = slab.insert("hello world").unwrap();
/// assert_eq!(slab.get(key).unwrap(), "hello world");
/// ```
pub fn insert(&self, value: T) -> Option<usize> {
let (tid, shard) = self.shards.current();
test_println!("insert {:?}", tid);
let mut value = Some(value);
shard
.init_with(|idx, slot| {
let gen = slot.insert(&mut value)?;
Some(gen.pack(idx))
})
.map(|idx| tid.pack(idx))
}
/// Return a handle to a vacant entry allowing for further manipulation.
///
/// This function is useful when creating values that must contain their
/// slab index. The returned [`VacantEntry`] reserves a slot in the slab and
/// is able to return the index of the entry.
///
/// # Examples
///
/// ```
/// # use sharded_slab::Slab;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry().unwrap();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab.get(hello).unwrap().0);
/// assert_eq!("hello", slab.get(hello).unwrap().1);
/// ```
pub fn vacant_entry(&self) -> Option<VacantEntry<'_, T, C>> {
let (tid, shard) = self.shards.current();
test_println!("vacant_entry {:?}", tid);
shard.init_with(|idx, slot| {
let inner = slot.init()?;
let key = inner.generation().pack(tid.pack(idx));
Some(VacantEntry {
inner,
key,
_lt: PhantomData,
})
})
}
/// Remove the value at the given index in the slab, returning `true` if a
/// value was removed.
///
/// Unlike [`take`], this method does _not_ block the current thread until
/// the value can be removed. Instead, if another thread is currently
/// accessing that value, this marks it to be removed by that thread when it
/// finishes accessing the value.
///
/// # Examples
///
/// ```rust
/// let slab = sharded_slab::Slab::new();
/// let key = slab.insert("hello world").unwrap();
///
/// // Remove the item from the slab.
/// assert!(slab.remove(key));
///
/// // Now, the slot is empty.
/// assert!(!slab.contains(key));
/// ```
///
/// ```rust
/// use std::sync::Arc;
///
/// let slab = Arc::new(sharded_slab::Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// let slab2 = slab.clone();
/// let thread2 = std::thread::spawn(move || {
/// // Depending on when this thread begins executing, the item may
/// // or may not have already been removed...
/// if let Some(item) = slab2.get(key) {
/// assert_eq!(item, "hello world");
/// }
/// });
///
/// // The item will be removed by thread2 when it finishes accessing it.
/// assert!(slab.remove(key));
///
/// thread2.join().unwrap();
/// assert!(!slab.contains(key));
/// ```
/// [`take`]: Slab::take
pub fn remove(&self, idx: usize) -> bool {
// The `Drop` impl for `Entry` calls `remove_local` or `remove_remote` based
// on where the guard was dropped from. If the dropped guard was the last one, this will
// call `Slot::remove_value` which actually clears storage.
let tid = C::unpack_tid(idx);
test_println!("rm_deferred {:?}", tid);
let shard = self.shards.get(tid.as_usize());
if tid.is_current() {
shard.map(|shard| shard.remove_local(idx)).unwrap_or(false)
} else {
shard.map(|shard| shard.remove_remote(idx)).unwrap_or(false)
}
}
/// Removes the value associated with the given key from the slab, returning
/// it.
///
/// If the slab does not contain a value for that key, `None` is returned
/// instead.
///
/// If the value associated with the given key is currently being
/// accessed by another thread, this method will block the current thread
/// until the item is no longer accessed. If this is not desired, use
/// [`remove`] instead.
///
/// **Note**: This method blocks the calling thread by spinning until the
/// currently outstanding references are released. Spinning for long periods
/// of time can result in high CPU time and power consumption. Therefore,
/// `take` should only be called when other references to the slot are
/// expected to be dropped soon (e.g., when all accesses are relatively
/// short).
///
/// # Examples
///
/// ```rust
/// let slab = sharded_slab::Slab::new();
/// let key = slab.insert("hello world").unwrap();
///
/// // Remove the item from the slab, returning it.
/// assert_eq!(slab.take(key), Some("hello world"));
///
/// // Now, the slot is empty.
/// assert!(!slab.contains(key));
/// ```
///
/// ```rust
/// use std::sync::Arc;
///
/// let slab = Arc::new(sharded_slab::Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// let slab2 = slab.clone();
/// let thread2 = std::thread::spawn(move || {
/// // Depending on when this thread begins executing, the item may
/// // or may not have already been removed...
/// if let Some(item) = slab2.get(key) {
/// assert_eq!(item, "hello world");
/// }
/// });
///
/// // The item will only be removed when the other thread finishes
/// // accessing it.
/// assert_eq!(slab.take(key), Some("hello world"));
///
/// thread2.join().unwrap();
/// assert!(!slab.contains(key));
/// ```
/// [`remove`]: Slab::remove
pub fn take(&self, idx: usize) -> Option<T> {
let tid = C::unpack_tid(idx);
test_println!("rm {:?}", tid);
let shard = self.shards.get(tid.as_usize())?;
if tid.is_current() {
shard.take_local(idx)
} else {
shard.take_remote(idx)
}
}
/// Return a reference to the value associated with the given key.
///
/// If the slab does not contain a value for the given key, or if the
/// maximum number of concurrent references to the slot has been reached,
/// `None` is returned instead.
///
/// # Examples
///
/// ```rust
/// let slab = sharded_slab::Slab::new();
/// let key = slab.insert("hello world").unwrap();
///
/// assert_eq!(slab.get(key).unwrap(), "hello world");
/// assert!(slab.get(12345).is_none());
/// ```
pub fn get(&self, key: usize) -> Option<Entry<'_, T, C>> {
let tid = C::unpack_tid(key);
test_println!("get {:?}; current={:?}", tid, Tid::<C>::current());
let shard = self.shards.get(tid.as_usize())?;
shard.with_slot(key, |slot| {
let inner = slot.get(C::unpack_gen(key))?;
let value = ptr::NonNull::from(slot.value().as_ref().unwrap());
Some(Entry {
inner,
value,
shard,
key,
})
})
}
/// Return an owned reference to the value at the given index.
///
/// If the slab does not contain a value for the given key, `None` is
/// returned instead.
///
/// Unlike [`get`], which borrows the slab, this method _clones_ the [`Arc`]
/// around the slab. This means that the returned [`OwnedEntry`] can be held
/// for an arbitrary lifetime. However, this method requires that the slab
/// itself be wrapped in an `Arc`.
///
/// # Examples
///
/// ```
/// # use sharded_slab::Slab;
/// use std::sync::Arc;
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let value = slab.clone().get_owned(key).unwrap();
///
/// // Now, the original `Arc` clone of the slab may be dropped, but the
/// // returned `OwnedEntry` can still access the value.
/// assert_eq!(value, "hello world");
/// ```
///
/// Unlike [`Entry`], an `OwnedEntry` may be stored in a struct which must live
/// for the `'static` lifetime:
///
/// ```
/// # use sharded_slab::Slab;
/// use sharded_slab::OwnedEntry;
/// use std::sync::Arc;
///
/// pub struct MyStruct {
/// entry: OwnedEntry<&'static str>,
/// // ... other fields ...
/// }
///
/// // Suppose this is some arbitrary function which requires a value that
/// // lives for the 'static lifetime...
/// fn function_requiring_static<T: 'static>(t: &T) {
/// // ... do something extremely important and interesting ...
/// }
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let entry = slab.clone().get_owned(key).unwrap();
/// let my_struct = MyStruct {
/// entry,
/// // ...
/// };
///
/// // We can use `my_struct` anywhere where it is required to have the
/// // `'static` lifetime:
/// function_requiring_static(&my_struct);
/// ```
///
/// [`OwnedEntry`]s may be sent between threads:
///
/// ```
/// # use sharded_slab::Slab;
/// use std::{thread, sync::Arc};
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let value = slab.clone().get_owned(key).unwrap();
///
/// thread::spawn(move || {
/// assert_eq!(value, "hello world");
/// // ...
/// }).join().unwrap();
/// ```
///
/// [`get`]: Slab::get
/// [`Arc`]: std::sync::Arc
pub fn get_owned(self: Arc<Self>, key: usize) -> Option<OwnedEntry<T, C>> {
let tid = C::unpack_tid(key);
test_println!("get_owned {:?}; current={:?}", tid, Tid::<C>::current());
let shard = self.shards.get(tid.as_usize())?;
shard.with_slot(key, |slot| {
let inner = slot.get(C::unpack_gen(key))?;
let value = ptr::NonNull::from(slot.value().as_ref().unwrap());
Some(OwnedEntry {
inner,
value,
slab: self.clone(),
key,
})
})
}
/// Returns `true` if the slab contains a value for the given key.
///
/// # Examples
///
/// ```
/// let slab = sharded_slab::Slab::new();
///
/// let key = slab.insert("hello world").unwrap();
/// assert!(slab.contains(key));
///
/// slab.take(key).unwrap();
/// assert!(!slab.contains(key));
/// ```
pub fn contains(&self, key: usize) -> bool {
self.get(key).is_some()
}
/// Returns an iterator over all the items in the slab.
pub fn unique_iter(&mut self) -> iter::UniqueIter<'_, T, C> {
let mut shards = self.shards.iter_mut();
let shard = shards.next().expect("must be at least 1 shard");
let mut pages = shard.iter();
let slots = pages.next().and_then(page::Shared::iter);
iter::UniqueIter {
shards,
slots,
pages,
}
}
}
impl<T> Default for Slab<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: fmt::Debug, C: cfg::Config> fmt::Debug for Slab<T, C> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Slab")
.field("shards", &self.shards)
.field("config", &C::debug())
.finish()
}
}
unsafe impl<T: Send, C: cfg::Config> Send for Slab<T, C> {}
unsafe impl<T: Sync, C: cfg::Config> Sync for Slab<T, C> {}
// === impl Entry ===
impl<'a, T, C: cfg::Config> Entry<'a, T, C> {
/// Returns the key used to access the guard.
pub fn key(&self) -> usize {
self.key
}
#[inline(always)]
fn value(&self) -> &T {
unsafe {
// Safety: this is always going to be valid, as it's projected from
// the safe reference to `self.value` --- this is just to avoid
// having to `expect` an option in the hot path when dereferencing.
self.value.as_ref()
}
}
}
impl<'a, T, C: cfg::Config> std::ops::Deref for Entry<'a, T, C> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.value()
}
}
impl<'a, T, C: cfg::Config> Drop for Entry<'a, T, C> {
fn drop(&mut self) {
let should_remove = unsafe {
// Safety: calling `slot::Guard::release` is unsafe, since the
// `Guard` value contains a pointer to the slot that may outlive the
// slab containing that slot. Here, the `Entry` guard owns a
// borrowed reference to the shard containing that slot, which
// ensures that the slot will not be dropped while this `Guard`
// exists.
self.inner.release()
};
if should_remove {
self.shard.clear_after_release(self.key)
}
}
}
impl<'a, T, C> fmt::Debug for Entry<'a, T, C>
where
T: fmt::Debug,
C: cfg::Config,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.value(), f)
}
}
impl<'a, T, C> PartialEq<T> for Entry<'a, T, C>
where
T: PartialEq<T>,
C: cfg::Config,
{
fn eq(&self, other: &T) -> bool {
self.value().eq(other)
}
}
// === impl VacantEntry ===
impl<'a, T, C: cfg::Config> VacantEntry<'a, T, C> {
/// Insert a value in the entry.
///
/// To get the integer index at which this value will be inserted, use
/// [`key`] prior to calling `insert`.
///
/// # Examples
///
/// ```
/// # use sharded_slab::Slab;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry().unwrap();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab.get(hello).unwrap().0);
/// assert_eq!("hello", slab.get(hello).unwrap().1);
/// ```
///
/// [`key`]: VacantEntry::key
pub fn insert(mut self, val: T) {
let value = unsafe {
// Safety: this `VacantEntry` only lives as long as the `Slab` it was
// borrowed from, so it cannot outlive the entry's slot.
self.inner.value_mut()
};
debug_assert!(
value.is_none(),
"tried to insert to a slot that already had a value!"
);
*value = Some(val);
let _released = unsafe {
// Safety: again, this `VacantEntry` only lives as long as the
// `Slab` it was borrowed from, so it cannot outlive the entry's
// slot.
self.inner.release()
};
debug_assert!(
!_released,
"removing a value before it was inserted should be a no-op"
)
}
/// Return the integer index at which this entry will be inserted.
///
/// A value stored in this entry will be associated with this key.
///
/// # Examples
///
/// ```
/// # use sharded_slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry().unwrap();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab.get(hello).unwrap().0);
/// assert_eq!("hello", slab.get(hello).unwrap().1);
/// ```
pub fn key(&self) -> usize {
self.key
}
}
// === impl OwnedEntry ===
impl<T, C> OwnedEntry<T, C>
where
C: cfg::Config,
{
/// Returns the key used to access this guard
pub fn key(&self) -> usize {
self.key
}
#[inline(always)]
fn value(&self) -> &T {
unsafe {
// Safety: this is always going to be valid, as it's projected from
// the safe reference to `self.value` --- this is just to avoid
// having to `expect` an option in the hot path when dereferencing.
self.value.as_ref()
}
}
}
impl<T, C> std::ops::Deref for OwnedEntry<T, C>
where
C: cfg::Config,
{
type Target = T;
fn deref(&self) -> &Self::Target {
self.value()
}
}
impl<T, C> Drop for OwnedEntry<T, C>
where
C: cfg::Config,
{
fn drop(&mut self) {
test_println!("drop OwnedEntry: try clearing data");
let should_clear = unsafe {
// Safety: calling `slot::Guard::release` is unsafe, since the
// `Guard` value contains a pointer to the slot that may outlive the
// slab containing that slot. Here, the `OwnedEntry` owns an `Arc`
// clone of the pool, which keeps it alive as long as the `OwnedEntry`
// exists.
self.inner.release()
};
if should_clear {
let shard_idx = Tid::<C>::from_packed(self.key);
test_println!("-> shard={:?}", shard_idx);
if let Some(shard) = self.slab.shards.get(shard_idx.as_usize()) {
shard.clear_after_release(self.key)
} else {
test_println!("-> shard={:?} does not exist! THIS IS A BUG", shard_idx);
debug_assert!(std::thread::panicking(), "[internal error] tried to drop an `OwnedEntry` to a slot on a shard that never existed!");
}
}
}
}
impl<T, C> fmt::Debug for OwnedEntry<T, C>
where
T: fmt::Debug,
C: cfg::Config,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.value(), f)
}
}
impl<T, C> PartialEq<T> for OwnedEntry<T, C>
where
T: PartialEq<T>,
C: cfg::Config,
{
fn eq(&self, other: &T) -> bool {
*self.value() == *other
}
}
unsafe impl<T, C> Sync for OwnedEntry<T, C>
where
T: Sync,
C: cfg::Config,
{
}
unsafe impl<T, C> Send for OwnedEntry<T, C>
where
T: Sync,
C: cfg::Config,
{
}
// === pack ===
pub(crate) trait Pack<C: cfg::Config>: Sized {
// ====== provided by each implementation =================================
/// The number of bits occupied by this type when packed into a usize.
///
/// This must be provided to determine the number of bits into which to pack
/// the type.
const LEN: usize;
/// The type packed on the less significant side of this type.
///
/// If this type is packed into the least significant bit of a usize, this
/// should be `()`, which occupies no bytes.
///
/// This is used to calculate the shift amount for packing this value.
type Prev: Pack<C>;
// ====== calculated automatically ========================================
/// A number consisting of `Self::LEN` 1 bits, starting at the least
/// significant bit.
///
/// This is the higest value this type can represent. This number is shifted
/// left by `Self::SHIFT` bits to calculate this type's `MASK`.
///
/// This is computed automatically based on `Self::LEN`.
const BITS: usize = {
let shift = 1 << (Self::LEN - 1);
shift | (shift - 1)
};
/// The number of bits to shift a number to pack it into a usize with other
/// values.
///
/// This is caculated automatically based on the `LEN` and `SHIFT` constants
/// of the previous value.
const SHIFT: usize = Self::Prev::SHIFT + Self::Prev::LEN;
/// The mask to extract only this type from a packed `usize`.
///
/// This is calculated by shifting `Self::BITS` left by `Self::SHIFT`.
const MASK: usize = Self::BITS << Self::SHIFT;
fn as_usize(&self) -> usize;
fn from_usize(val: usize) -> Self;
#[inline(always)]
fn pack(&self, to: usize) -> usize {
let value = self.as_usize();
debug_assert!(value <= Self::BITS);
(to & !Self::MASK) | (value << Self::SHIFT)
}
#[inline(always)]
fn from_packed(from: usize) -> Self {
let value = (from & Self::MASK) >> Self::SHIFT;
debug_assert!(value <= Self::BITS);
Self::from_usize(value)
}
}
impl<C: cfg::Config> Pack<C> for () {
const BITS: usize = 0;
const LEN: usize = 0;
const SHIFT: usize = 0;
const MASK: usize = 0;
type Prev = ();
fn as_usize(&self) -> usize {
unreachable!()
}
fn from_usize(_val: usize) -> Self {
unreachable!()
}
fn pack(&self, _to: usize) -> usize {
unreachable!()
}
fn from_packed(_from: usize) -> Self {
unreachable!()
}
}
#[cfg(test)]
pub(crate) use self::tests::util as test_util;
#[cfg(test)]
mod tests;