regex_automata/
sparse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
#[cfg(feature = "std")]
use core::fmt;
#[cfg(feature = "std")]
use core::iter;
use core::marker::PhantomData;
use core::mem::size_of;
#[cfg(feature = "std")]
use std::collections::HashMap;

#[cfg(feature = "std")]
use byteorder::{BigEndian, LittleEndian};
use byteorder::{ByteOrder, NativeEndian};

use classes::ByteClasses;
use dense;
use dfa::DFA;
#[cfg(feature = "std")]
use error::{Error, Result};
#[cfg(feature = "std")]
use state_id::{dead_id, usize_to_state_id, write_state_id_bytes, StateID};
#[cfg(not(feature = "std"))]
use state_id::{dead_id, StateID};

/// A sparse table-based deterministic finite automaton (DFA).
///
/// In contrast to a [dense DFA](enum.DenseDFA.html), a sparse DFA uses a
/// more space efficient representation for its transition table. Consequently,
/// sparse DFAs can use much less memory than dense DFAs, but this comes at a
/// price. In particular, reading the more space efficient transitions takes
/// more work, and consequently, searching using a sparse DFA is typically
/// slower than a dense DFA.
///
/// A sparse DFA can be built using the default configuration via the
/// [`SparseDFA::new`](enum.SparseDFA.html#method.new) constructor. Otherwise,
/// one can configure various aspects of a dense DFA via
/// [`dense::Builder`](dense/struct.Builder.html), and then convert a dense
/// DFA to a sparse DFA using
/// [`DenseDFA::to_sparse`](enum.DenseDFA.html#method.to_sparse).
///
/// In general, a sparse DFA supports all the same operations as a dense DFA.
///
/// Making the choice between a dense and sparse DFA depends on your specific
/// work load. If you can sacrifice a bit of search time performance, then a
/// sparse DFA might be the best choice. In particular, while sparse DFAs are
/// probably always slower than dense DFAs, you may find that they are easily
/// fast enough for your purposes!
///
/// # State size
///
/// A `SparseDFA` has two type parameters, `T` and `S`. `T` corresponds to
/// the type of the DFA's transition table while `S` corresponds to the
/// representation used for the DFA's state identifiers as described by the
/// [`StateID`](trait.StateID.html) trait. This type parameter is typically
/// `usize`, but other valid choices provided by this crate include `u8`,
/// `u16`, `u32` and `u64`. The primary reason for choosing a different state
/// identifier representation than the default is to reduce the amount of
/// memory used by a DFA. Note though, that if the chosen representation cannot
/// accommodate the size of your DFA, then building the DFA will fail and
/// return an error.
///
/// While the reduction in heap memory used by a DFA is one reason for choosing
/// a smaller state identifier representation, another possible reason is for
/// decreasing the serialization size of a DFA, as returned by
/// [`to_bytes_little_endian`](enum.SparseDFA.html#method.to_bytes_little_endian),
/// [`to_bytes_big_endian`](enum.SparseDFA.html#method.to_bytes_big_endian)
/// or
/// [`to_bytes_native_endian`](enum.DenseDFA.html#method.to_bytes_native_endian).
///
/// The type of the transition table is typically either `Vec<u8>` or `&[u8]`,
/// depending on where the transition table is stored. Note that this is
/// different than a dense DFA, whose transition table is typically
/// `Vec<S>` or `&[S]`. The reason for this is that a sparse DFA always reads
/// its transition table from raw bytes because the table is compactly packed.
///
/// # Variants
///
/// This DFA is defined as a non-exhaustive enumeration of different types of
/// dense DFAs. All of the variants use the same internal representation
/// for the transition table, but they vary in how the transition table is
/// read. A DFA's specific variant depends on the configuration options set via
/// [`dense::Builder`](dense/struct.Builder.html). The default variant is
/// `ByteClass`.
///
/// # The `DFA` trait
///
/// This type implements the [`DFA`](trait.DFA.html) trait, which means it
/// can be used for searching. For example:
///
/// ```
/// use regex_automata::{DFA, SparseDFA};
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let dfa = SparseDFA::new("foo[0-9]+")?;
/// assert_eq!(Some(8), dfa.find(b"foo12345"));
/// # Ok(()) }; example().unwrap()
/// ```
///
/// The `DFA` trait also provides an assortment of other lower level methods
/// for DFAs, such as `start_state` and `next_state`. While these are correctly
/// implemented, it is an anti-pattern to use them in performance sensitive
/// code on the `SparseDFA` type directly. Namely, each implementation requires
/// a branch to determine which type of sparse DFA is being used. Instead,
/// this branch should be pushed up a layer in the code since walking the
/// transitions of a DFA is usually a hot path. If you do need to use these
/// lower level methods in performance critical code, then you should match on
/// the variants of this DFA and use each variant's implementation of the `DFA`
/// trait directly.
#[derive(Clone, Debug)]
pub enum SparseDFA<T: AsRef<[u8]>, S: StateID = usize> {
    /// A standard DFA that does not use byte classes.
    Standard(Standard<T, S>),
    /// A DFA that shrinks its alphabet to a set of equivalence classes instead
    /// of using all possible byte values. Any two bytes belong to the same
    /// equivalence class if and only if they can be used interchangeably
    /// anywhere in the DFA while never discriminating between a match and a
    /// non-match.
    ///
    /// Unlike dense DFAs, sparse DFAs do not tend to benefit nearly as much
    /// from using byte classes. In some cases, using byte classes can even
    /// marginally increase the size of a sparse DFA's transition table. The
    /// reason for this is that a sparse DFA already compacts each state's
    /// transitions separate from whether byte classes are used.
    ByteClass(ByteClass<T, S>),
    /// Hints that destructuring should not be exhaustive.
    ///
    /// This enum may grow additional variants, so this makes sure clients
    /// don't count on exhaustive matching. (Otherwise, adding a new variant
    /// could break existing code.)
    #[doc(hidden)]
    __Nonexhaustive,
}

#[cfg(feature = "std")]
impl SparseDFA<Vec<u8>, usize> {
    /// Parse the given regular expression using a default configuration and
    /// return the corresponding sparse DFA.
    ///
    /// The default configuration uses `usize` for state IDs and reduces the
    /// alphabet size by splitting bytes into equivalence classes. The
    /// resulting DFA is *not* minimized.
    ///
    /// If you want a non-default configuration, then use the
    /// [`dense::Builder`](dense/struct.Builder.html)
    /// to set your own configuration, and then call
    /// [`DenseDFA::to_sparse`](enum.DenseDFA.html#method.to_sparse)
    /// to create a sparse DFA.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{DFA, SparseDFA};
    ///
    /// # fn example() -> Result<(), regex_automata::Error> {
    /// let dfa = SparseDFA::new("foo[0-9]+bar")?;
    /// assert_eq!(Some(11), dfa.find(b"foo12345bar"));
    /// # Ok(()) }; example().unwrap()
    /// ```
    pub fn new(pattern: &str) -> Result<SparseDFA<Vec<u8>, usize>> {
        dense::Builder::new()
            .build(pattern)
            .and_then(|dense| dense.to_sparse())
    }
}

#[cfg(feature = "std")]
impl<S: StateID> SparseDFA<Vec<u8>, S> {
    /// Create a new empty sparse DFA that never matches any input.
    ///
    /// # Example
    ///
    /// In order to build an empty DFA, callers must provide a type hint
    /// indicating their choice of state identifier representation.
    ///
    /// ```
    /// use regex_automata::{DFA, SparseDFA};
    ///
    /// # fn example() -> Result<(), regex_automata::Error> {
    /// let dfa: SparseDFA<Vec<u8>, usize> = SparseDFA::empty();
    /// assert_eq!(None, dfa.find(b""));
    /// assert_eq!(None, dfa.find(b"foo"));
    /// # Ok(()) }; example().unwrap()
    /// ```
    pub fn empty() -> SparseDFA<Vec<u8>, S> {
        dense::DenseDFA::empty().to_sparse().unwrap()
    }

    pub(crate) fn from_dense_sized<T: AsRef<[S]>, A: StateID>(
        dfa: &dense::Repr<T, S>,
    ) -> Result<SparseDFA<Vec<u8>, A>> {
        Repr::from_dense_sized(dfa).map(|r| r.into_sparse_dfa())
    }
}

impl<T: AsRef<[u8]>, S: StateID> SparseDFA<T, S> {
    /// Cheaply return a borrowed version of this sparse DFA. Specifically, the
    /// DFA returned always uses `&[u8]` for its transition table while keeping
    /// the same state identifier representation.
    pub fn as_ref<'a>(&'a self) -> SparseDFA<&'a [u8], S> {
        match *self {
            SparseDFA::Standard(Standard(ref r)) => {
                SparseDFA::Standard(Standard(r.as_ref()))
            }
            SparseDFA::ByteClass(ByteClass(ref r)) => {
                SparseDFA::ByteClass(ByteClass(r.as_ref()))
            }
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    /// Return an owned version of this sparse DFA. Specifically, the DFA
    /// returned always uses `Vec<u8>` for its transition table while keeping
    /// the same state identifier representation.
    ///
    /// Effectively, this returns a sparse DFA whose transition table lives
    /// on the heap.
    #[cfg(feature = "std")]
    pub fn to_owned(&self) -> SparseDFA<Vec<u8>, S> {
        match *self {
            SparseDFA::Standard(Standard(ref r)) => {
                SparseDFA::Standard(Standard(r.to_owned()))
            }
            SparseDFA::ByteClass(ByteClass(ref r)) => {
                SparseDFA::ByteClass(ByteClass(r.to_owned()))
            }
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    /// Returns the memory usage, in bytes, of this DFA.
    ///
    /// The memory usage is computed based on the number of bytes used to
    /// represent this DFA's transition table. This typically corresponds to
    /// heap memory usage.
    ///
    /// This does **not** include the stack size used up by this DFA. To
    /// compute that, used `std::mem::size_of::<SparseDFA>()`.
    pub fn memory_usage(&self) -> usize {
        self.repr().memory_usage()
    }

    fn repr(&self) -> &Repr<T, S> {
        match *self {
            SparseDFA::Standard(ref r) => &r.0,
            SparseDFA::ByteClass(ref r) => &r.0,
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }
}

/// Routines for converting a sparse DFA to other representations, such as
/// smaller state identifiers or raw bytes suitable for persistent storage.
#[cfg(feature = "std")]
impl<T: AsRef<[u8]>, S: StateID> SparseDFA<T, S> {
    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `u8` for the representation of state
    /// identifiers. If `u8` is insufficient to represent all state identifiers
    /// in this DFA, then this returns an error.
    ///
    /// This is a convenience routine for `to_sized::<u8>()`.
    pub fn to_u8(&self) -> Result<SparseDFA<Vec<u8>, u8>> {
        self.to_sized()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `u16` for the representation of state
    /// identifiers. If `u16` is insufficient to represent all state
    /// identifiers in this DFA, then this returns an error.
    ///
    /// This is a convenience routine for `to_sized::<u16>()`.
    pub fn to_u16(&self) -> Result<SparseDFA<Vec<u8>, u16>> {
        self.to_sized()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `u32` for the representation of state
    /// identifiers. If `u32` is insufficient to represent all state
    /// identifiers in this DFA, then this returns an error.
    ///
    /// This is a convenience routine for `to_sized::<u32>()`.
    #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
    pub fn to_u32(&self) -> Result<SparseDFA<Vec<u8>, u32>> {
        self.to_sized()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `u64` for the representation of state
    /// identifiers. If `u64` is insufficient to represent all state
    /// identifiers in this DFA, then this returns an error.
    ///
    /// This is a convenience routine for `to_sized::<u64>()`.
    #[cfg(target_pointer_width = "64")]
    pub fn to_u64(&self) -> Result<SparseDFA<Vec<u8>, u64>> {
        self.to_sized()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `A` for the representation of state
    /// identifiers. If `A` is insufficient to represent all state identifiers
    /// in this DFA, then this returns an error.
    ///
    /// An alternative way to construct such a DFA is to use
    /// [`DenseDFA::to_sparse_sized`](enum.DenseDFA.html#method.to_sparse_sized).
    /// In general, picking the appropriate size upon initial construction of
    /// a sparse DFA is preferred, since it will do the conversion in one
    /// step instead of two.
    pub fn to_sized<A: StateID>(&self) -> Result<SparseDFA<Vec<u8>, A>> {
        self.repr().to_sized().map(|r| r.into_sparse_dfa())
    }

    /// Serialize a sparse DFA to raw bytes in little endian format.
    ///
    /// If the state identifier representation of this DFA has a size different
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
    /// implementations of `StateID` provided by this crate satisfy this
    /// requirement.
    pub fn to_bytes_little_endian(&self) -> Result<Vec<u8>> {
        self.repr().to_bytes::<LittleEndian>()
    }

    /// Serialize a sparse DFA to raw bytes in big endian format.
    ///
    /// If the state identifier representation of this DFA has a size different
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
    /// implementations of `StateID` provided by this crate satisfy this
    /// requirement.
    pub fn to_bytes_big_endian(&self) -> Result<Vec<u8>> {
        self.repr().to_bytes::<BigEndian>()
    }

    /// Serialize a sparse DFA to raw bytes in native endian format.
    /// Generally, it is better to pick an explicit endianness using either
    /// `to_bytes_little_endian` or `to_bytes_big_endian`. This routine is
    /// useful in tests where the DFA is serialized and deserialized on the
    /// same platform.
    ///
    /// If the state identifier representation of this DFA has a size different
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
    /// implementations of `StateID` provided by this crate satisfy this
    /// requirement.
    pub fn to_bytes_native_endian(&self) -> Result<Vec<u8>> {
        self.repr().to_bytes::<NativeEndian>()
    }
}

impl<'a, S: StateID> SparseDFA<&'a [u8], S> {
    /// Deserialize a sparse DFA with a specific state identifier
    /// representation.
    ///
    /// Deserializing a DFA using this routine will never allocate heap memory.
    /// This is also guaranteed to be a constant time operation that does not
    /// vary with the size of the DFA.
    ///
    /// The bytes given should be generated by the serialization of a DFA with
    /// either the
    /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian)
    /// method or the
    /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
    /// endian, depending on the endianness of the machine you are
    /// deserializing this DFA from.
    ///
    /// If the state identifier representation is `usize`, then deserialization
    /// is dependent on the pointer size. For this reason, it is best to
    /// serialize DFAs using a fixed size representation for your state
    /// identifiers, such as `u8`, `u16`, `u32` or `u64`.
    ///
    /// # Panics
    ///
    /// The bytes given should be *trusted*. In particular, if the bytes
    /// are not a valid serialization of a DFA, or if the endianness of the
    /// serialized bytes is different than the endianness of the machine that
    /// is deserializing the DFA, then this routine will panic. Moreover, it
    /// is possible for this deserialization routine to succeed even if the
    /// given bytes do not represent a valid serialized sparse DFA.
    ///
    /// # Safety
    ///
    /// This routine is unsafe because it permits callers to provide an
    /// arbitrary transition table with possibly incorrect transitions. While
    /// the various serialization routines will never return an incorrect
    /// transition table, there is no guarantee that the bytes provided here
    /// are correct. While deserialization does many checks (as documented
    /// above in the panic conditions), this routine does not check that the
    /// transition table is correct. Given an incorrect transition table, it is
    /// possible for the search routines to access out-of-bounds memory because
    /// of explicit bounds check elision.
    ///
    /// # Example
    ///
    /// This example shows how to serialize a DFA to raw bytes, deserialize it
    /// and then use it for searching. Note that we first convert the DFA to
    /// using `u16` for its state identifier representation before serializing
    /// it. While this isn't strictly necessary, it's good practice in order to
    /// decrease the size of the DFA and to avoid platform specific pitfalls
    /// such as differing pointer sizes.
    ///
    /// ```
    /// use regex_automata::{DFA, DenseDFA, SparseDFA};
    ///
    /// # fn example() -> Result<(), regex_automata::Error> {
    /// let sparse = SparseDFA::new("foo[0-9]+")?;
    /// let bytes = sparse.to_u16()?.to_bytes_native_endian()?;
    ///
    /// let dfa: SparseDFA<&[u8], u16> = unsafe {
    ///     SparseDFA::from_bytes(&bytes)
    /// };
    ///
    /// assert_eq!(Some(8), dfa.find(b"foo12345"));
    /// # Ok(()) }; example().unwrap()
    /// ```
    pub unsafe fn from_bytes(buf: &'a [u8]) -> SparseDFA<&'a [u8], S> {
        Repr::from_bytes(buf).into_sparse_dfa()
    }
}

impl<T: AsRef<[u8]>, S: StateID> DFA for SparseDFA<T, S> {
    type ID = S;

    #[inline]
    fn start_state(&self) -> S {
        self.repr().start_state()
    }

    #[inline]
    fn is_match_state(&self, id: S) -> bool {
        self.repr().is_match_state(id)
    }

    #[inline]
    fn is_dead_state(&self, id: S) -> bool {
        self.repr().is_dead_state(id)
    }

    #[inline]
    fn is_match_or_dead_state(&self, id: S) -> bool {
        self.repr().is_match_or_dead_state(id)
    }

    #[inline]
    fn is_anchored(&self) -> bool {
        self.repr().is_anchored()
    }

    #[inline]
    fn next_state(&self, current: S, input: u8) -> S {
        match *self {
            SparseDFA::Standard(ref r) => r.next_state(current, input),
            SparseDFA::ByteClass(ref r) => r.next_state(current, input),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    #[inline]
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
        self.next_state(current, input)
    }

    // We specialize the following methods because it lets us lift the
    // case analysis between the different types of sparse DFAs. Instead of
    // doing the case analysis for every transition, we do it once before
    // searching. For sparse DFAs, this doesn't seem to benefit performance as
    // much as it does for the dense DFAs, but it's easy to do so we might as
    // well do it.

    #[inline]
    fn is_match_at(&self, bytes: &[u8], start: usize) -> bool {
        match *self {
            SparseDFA::Standard(ref r) => r.is_match_at(bytes, start),
            SparseDFA::ByteClass(ref r) => r.is_match_at(bytes, start),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    #[inline]
    fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
        match *self {
            SparseDFA::Standard(ref r) => r.shortest_match_at(bytes, start),
            SparseDFA::ByteClass(ref r) => r.shortest_match_at(bytes, start),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    #[inline]
    fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
        match *self {
            SparseDFA::Standard(ref r) => r.find_at(bytes, start),
            SparseDFA::ByteClass(ref r) => r.find_at(bytes, start),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    #[inline]
    fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
        match *self {
            SparseDFA::Standard(ref r) => r.rfind_at(bytes, start),
            SparseDFA::ByteClass(ref r) => r.rfind_at(bytes, start),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }
}

/// A standard sparse DFA that does not use premultiplication or byte classes.
///
/// Generally, it isn't necessary to use this type directly, since a
/// `SparseDFA` can be used for searching directly. One possible reason why
/// one might want to use this type directly is if you are implementing your
/// own search routines by walking a DFA's transitions directly. In that case,
/// you'll want to use this type (or any of the other DFA variant types)
/// directly, since they implement `next_state` more efficiently.
#[derive(Clone, Debug)]
pub struct Standard<T: AsRef<[u8]>, S: StateID = usize>(Repr<T, S>);

impl<T: AsRef<[u8]>, S: StateID> DFA for Standard<T, S> {
    type ID = S;

    #[inline]
    fn start_state(&self) -> S {
        self.0.start_state()
    }

    #[inline]
    fn is_match_state(&self, id: S) -> bool {
        self.0.is_match_state(id)
    }

    #[inline]
    fn is_dead_state(&self, id: S) -> bool {
        self.0.is_dead_state(id)
    }

    #[inline]
    fn is_match_or_dead_state(&self, id: S) -> bool {
        self.0.is_match_or_dead_state(id)
    }

    #[inline]
    fn is_anchored(&self) -> bool {
        self.0.is_anchored()
    }

    #[inline]
    fn next_state(&self, current: S, input: u8) -> S {
        self.0.state(current).next(input)
    }

    #[inline]
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
        self.next_state(current, input)
    }
}

/// A sparse DFA that shrinks its alphabet.
///
/// Alphabet shrinking is achieved by using a set of equivalence classes
/// instead of using all possible byte values. Any two bytes belong to the same
/// equivalence class if and only if they can be used interchangeably anywhere
/// in the DFA while never discriminating between a match and a non-match.
///
/// Unlike dense DFAs, sparse DFAs do not tend to benefit nearly as much from
/// using byte classes. In some cases, using byte classes can even marginally
/// increase the size of a sparse DFA's transition table. The reason for this
/// is that a sparse DFA already compacts each state's transitions separate
/// from whether byte classes are used.
///
/// Generally, it isn't necessary to use this type directly, since a
/// `SparseDFA` can be used for searching directly. One possible reason why
/// one might want to use this type directly is if you are implementing your
/// own search routines by walking a DFA's transitions directly. In that case,
/// you'll want to use this type (or any of the other DFA variant types)
/// directly, since they implement `next_state` more efficiently.
#[derive(Clone, Debug)]
pub struct ByteClass<T: AsRef<[u8]>, S: StateID = usize>(Repr<T, S>);

impl<T: AsRef<[u8]>, S: StateID> DFA for ByteClass<T, S> {
    type ID = S;

    #[inline]
    fn start_state(&self) -> S {
        self.0.start_state()
    }

    #[inline]
    fn is_match_state(&self, id: S) -> bool {
        self.0.is_match_state(id)
    }

    #[inline]
    fn is_dead_state(&self, id: S) -> bool {
        self.0.is_dead_state(id)
    }

    #[inline]
    fn is_match_or_dead_state(&self, id: S) -> bool {
        self.0.is_match_or_dead_state(id)
    }

    #[inline]
    fn is_anchored(&self) -> bool {
        self.0.is_anchored()
    }

    #[inline]
    fn next_state(&self, current: S, input: u8) -> S {
        let input = self.0.byte_classes.get(input);
        self.0.state(current).next(input)
    }

    #[inline]
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
        self.next_state(current, input)
    }
}

/// The underlying representation of a sparse DFA. This is shared by all of
/// the different variants of a sparse DFA.
#[derive(Clone)]
#[cfg_attr(not(feature = "std"), derive(Debug))]
struct Repr<T: AsRef<[u8]>, S: StateID = usize> {
    anchored: bool,
    start: S,
    state_count: usize,
    max_match: S,
    byte_classes: ByteClasses,
    trans: T,
}

impl<T: AsRef<[u8]>, S: StateID> Repr<T, S> {
    fn into_sparse_dfa(self) -> SparseDFA<T, S> {
        if self.byte_classes.is_singleton() {
            SparseDFA::Standard(Standard(self))
        } else {
            SparseDFA::ByteClass(ByteClass(self))
        }
    }

    fn as_ref<'a>(&'a self) -> Repr<&'a [u8], S> {
        Repr {
            anchored: self.anchored,
            start: self.start,
            state_count: self.state_count,
            max_match: self.max_match,
            byte_classes: self.byte_classes.clone(),
            trans: self.trans(),
        }
    }

    #[cfg(feature = "std")]
    fn to_owned(&self) -> Repr<Vec<u8>, S> {
        Repr {
            anchored: self.anchored,
            start: self.start,
            state_count: self.state_count,
            max_match: self.max_match,
            byte_classes: self.byte_classes.clone(),
            trans: self.trans().to_vec(),
        }
    }

    /// Return a convenient representation of the given state.
    ///
    /// This is marked as inline because it doesn't seem to get inlined
    /// otherwise, which leads to a fairly significant performance loss (~25%).
    #[inline]
    fn state<'a>(&'a self, id: S) -> State<'a, S> {
        let mut pos = id.to_usize();
        let ntrans = NativeEndian::read_u16(&self.trans()[pos..]) as usize;
        pos += 2;
        let input_ranges = &self.trans()[pos..pos + (ntrans * 2)];
        pos += 2 * ntrans;
        let next = &self.trans()[pos..pos + (ntrans * size_of::<S>())];
        State { _state_id_repr: PhantomData, ntrans, input_ranges, next }
    }

    /// Return an iterator over all of the states in this DFA.
    ///
    /// The iterator returned yields tuples, where the first element is the
    /// state ID and the second element is the state itself.
    #[cfg(feature = "std")]
    fn states<'a>(&'a self) -> StateIter<'a, T, S> {
        StateIter { dfa: self, id: dead_id() }
    }

    fn memory_usage(&self) -> usize {
        self.trans().len()
    }

    fn start_state(&self) -> S {
        self.start
    }

    fn is_match_state(&self, id: S) -> bool {
        self.is_match_or_dead_state(id) && !self.is_dead_state(id)
    }

    fn is_dead_state(&self, id: S) -> bool {
        id == dead_id()
    }

    fn is_match_or_dead_state(&self, id: S) -> bool {
        id <= self.max_match
    }

    fn is_anchored(&self) -> bool {
        self.anchored
    }

    fn trans(&self) -> &[u8] {
        self.trans.as_ref()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to this
    /// DFA, but attempt to use `A` for the representation of state
    /// identifiers. If `A` is insufficient to represent all state identifiers
    /// in this DFA, then this returns an error.
    #[cfg(feature = "std")]
    fn to_sized<A: StateID>(&self) -> Result<Repr<Vec<u8>, A>> {
        // To build the new DFA, we proceed much like the initial construction
        // of the sparse DFA. Namely, since the state ID size is changing,
        // we don't actually know all of our state IDs until we've allocated
        // all necessary space. So we do one pass that allocates all of the
        // storage we need, and then another pass to fill in the transitions.

        let mut trans = Vec::with_capacity(size_of::<A>() * self.state_count);
        let mut map: HashMap<S, A> = HashMap::with_capacity(self.state_count);
        for (old_id, state) in self.states() {
            let pos = trans.len();
            map.insert(old_id, usize_to_state_id(pos)?);

            let n = state.ntrans;
            let zeros = 2 + (n * 2) + (n * size_of::<A>());
            trans.extend(iter::repeat(0).take(zeros));

            NativeEndian::write_u16(&mut trans[pos..], n as u16);
            let (s, e) = (pos + 2, pos + 2 + (n * 2));
            trans[s..e].copy_from_slice(state.input_ranges);
        }

        let mut new = Repr {
            anchored: self.anchored,
            start: map[&self.start],
            state_count: self.state_count,
            max_match: map[&self.max_match],
            byte_classes: self.byte_classes.clone(),
            trans,
        };
        for (&old_id, &new_id) in map.iter() {
            let old_state = self.state(old_id);
            let mut new_state = new.state_mut(new_id);
            for i in 0..new_state.ntrans {
                let next = map[&old_state.next_at(i)];
                new_state.set_next_at(i, usize_to_state_id(next.to_usize())?);
            }
        }
        new.start = map[&self.start];
        new.max_match = map[&self.max_match];
        Ok(new)
    }

    /// Serialize a sparse DFA to raw bytes using the provided endianness.
    ///
    /// If the state identifier representation of this DFA has a size different
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
    /// implementations of `StateID` provided by this crate satisfy this
    /// requirement.
    ///
    /// Unlike dense DFAs, the result is not necessarily aligned since a
    /// sparse DFA's transition table is always read as a sequence of bytes.
    #[cfg(feature = "std")]
    fn to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>> {
        let label = b"rust-regex-automata-sparse-dfa\x00";
        let size =
            // For human readable label.
            label.len()
            // endiannes check, must be equal to 0xFEFF for native endian
            + 2
            // For version number.
            + 2
            // Size of state ID representation, in bytes.
            // Must be 1, 2, 4 or 8.
            + 2
            // For DFA misc options. (Currently unused.)
            + 2
            // For start state.
            + 8
            // For state count.
            + 8
            // For max match state.
            + 8
            // For byte class map.
            + 256
            // For transition table.
            + self.trans().len();

        let mut i = 0;
        let mut buf = vec![0; size];

        // write label
        for &b in label {
            buf[i] = b;
            i += 1;
        }
        // endianness check
        A::write_u16(&mut buf[i..], 0xFEFF);
        i += 2;
        // version number
        A::write_u16(&mut buf[i..], 1);
        i += 2;
        // size of state ID
        let state_size = size_of::<S>();
        if ![1, 2, 4, 8].contains(&state_size) {
            return Err(Error::serialize(&format!(
                "state size of {} not supported, must be 1, 2, 4 or 8",
                state_size
            )));
        }
        A::write_u16(&mut buf[i..], state_size as u16);
        i += 2;
        // DFA misc options
        let mut options = 0u16;
        if self.anchored {
            options |= dense::MASK_ANCHORED;
        }
        A::write_u16(&mut buf[i..], options);
        i += 2;
        // start state
        A::write_u64(&mut buf[i..], self.start.to_usize() as u64);
        i += 8;
        // state count
        A::write_u64(&mut buf[i..], self.state_count as u64);
        i += 8;
        // max match state
        A::write_u64(&mut buf[i..], self.max_match.to_usize() as u64);
        i += 8;
        // byte class map
        for b in (0..256).map(|b| b as u8) {
            buf[i] = self.byte_classes.get(b);
            i += 1;
        }
        // transition table
        for (_, state) in self.states() {
            A::write_u16(&mut buf[i..], state.ntrans as u16);
            i += 2;
            buf[i..i + (state.ntrans * 2)].copy_from_slice(state.input_ranges);
            i += state.ntrans * 2;
            for j in 0..state.ntrans {
                write_state_id_bytes::<A, _>(&mut buf[i..], state.next_at(j));
                i += size_of::<S>();
            }
        }

        assert_eq!(size, i, "expected to consume entire buffer");

        Ok(buf)
    }
}

impl<'a, S: StateID> Repr<&'a [u8], S> {
    /// The implementation for deserializing a sparse DFA from raw bytes.
    unsafe fn from_bytes(mut buf: &'a [u8]) -> Repr<&'a [u8], S> {
        // skip over label
        match buf.iter().position(|&b| b == b'\x00') {
            None => panic!("could not find label"),
            Some(i) => buf = &buf[i + 1..],
        }

        // check that current endianness is same as endianness of DFA
        let endian_check = NativeEndian::read_u16(buf);
        buf = &buf[2..];
        if endian_check != 0xFEFF {
            panic!(
                "endianness mismatch, expected 0xFEFF but got 0x{:X}. \
                 are you trying to load a SparseDFA serialized with a \
                 different endianness?",
                endian_check,
            );
        }

        // check that the version number is supported
        let version = NativeEndian::read_u16(buf);
        buf = &buf[2..];
        if version != 1 {
            panic!(
                "expected version 1, but found unsupported version {}",
                version,
            );
        }

        // read size of state
        let state_size = NativeEndian::read_u16(buf) as usize;
        if state_size != size_of::<S>() {
            panic!(
                "state size of SparseDFA ({}) does not match \
                 requested state size ({})",
                state_size,
                size_of::<S>(),
            );
        }
        buf = &buf[2..];

        // read miscellaneous options
        let opts = NativeEndian::read_u16(buf);
        buf = &buf[2..];

        // read start state
        let start = S::from_usize(NativeEndian::read_u64(buf) as usize);
        buf = &buf[8..];

        // read state count
        let state_count = NativeEndian::read_u64(buf) as usize;
        buf = &buf[8..];

        // read max match state
        let max_match = S::from_usize(NativeEndian::read_u64(buf) as usize);
        buf = &buf[8..];

        // read byte classes
        let byte_classes = ByteClasses::from_slice(&buf[..256]);
        buf = &buf[256..];

        Repr {
            anchored: opts & dense::MASK_ANCHORED > 0,
            start,
            state_count,
            max_match,
            byte_classes,
            trans: buf,
        }
    }
}

#[cfg(feature = "std")]
impl<S: StateID> Repr<Vec<u8>, S> {
    /// The implementation for constructing a sparse DFA from a dense DFA.
    fn from_dense_sized<T: AsRef<[S]>, A: StateID>(
        dfa: &dense::Repr<T, S>,
    ) -> Result<Repr<Vec<u8>, A>> {
        // In order to build the transition table, we need to be able to write
        // state identifiers for each of the "next" transitions in each state.
        // Our state identifiers correspond to the byte offset in the
        // transition table at which the state is encoded. Therefore, we do not
        // actually know what the state identifiers are until we've allocated
        // exactly as much space as we need for each state. Thus, construction
        // of the transition table happens in two passes.
        //
        // In the first pass, we fill out the shell of each state, which
        // includes the transition count, the input byte ranges and zero-filled
        // space for the transitions. In this first pass, we also build up a
        // map from the state identifier index of the dense DFA to the state
        // identifier in this sparse DFA.
        //
        // In the second pass, we fill in the transitions based on the map
        // built in the first pass.

        let mut trans = Vec::with_capacity(size_of::<A>() * dfa.state_count());
        let mut remap: Vec<A> = vec![dead_id(); dfa.state_count()];
        for (old_id, state) in dfa.states() {
            let pos = trans.len();

            remap[dfa.state_id_to_index(old_id)] = usize_to_state_id(pos)?;
            // zero-filled space for the transition count
            trans.push(0);
            trans.push(0);

            let mut trans_count = 0;
            for (b1, b2, _) in state.sparse_transitions() {
                trans_count += 1;
                trans.push(b1);
                trans.push(b2);
            }
            // fill in the transition count
            NativeEndian::write_u16(&mut trans[pos..], trans_count);

            // zero-fill the actual transitions
            let zeros = trans_count as usize * size_of::<A>();
            trans.extend(iter::repeat(0).take(zeros));
        }

        let mut new = Repr {
            anchored: dfa.is_anchored(),
            start: remap[dfa.state_id_to_index(dfa.start_state())],
            state_count: dfa.state_count(),
            max_match: remap[dfa.state_id_to_index(dfa.max_match_state())],
            byte_classes: dfa.byte_classes().clone(),
            trans,
        };
        for (old_id, old_state) in dfa.states() {
            let new_id = remap[dfa.state_id_to_index(old_id)];
            let mut new_state = new.state_mut(new_id);
            let sparse = old_state.sparse_transitions();
            for (i, (_, _, next)) in sparse.enumerate() {
                let next = remap[dfa.state_id_to_index(next)];
                new_state.set_next_at(i, next);
            }
        }
        Ok(new)
    }

    /// Return a convenient mutable representation of the given state.
    fn state_mut<'a>(&'a mut self, id: S) -> StateMut<'a, S> {
        let mut pos = id.to_usize();
        let ntrans = NativeEndian::read_u16(&self.trans[pos..]) as usize;
        pos += 2;

        let size = (ntrans * 2) + (ntrans * size_of::<S>());
        let ranges_and_next = &mut self.trans[pos..pos + size];
        let (input_ranges, next) = ranges_and_next.split_at_mut(ntrans * 2);
        StateMut { _state_id_repr: PhantomData, ntrans, input_ranges, next }
    }
}

#[cfg(feature = "std")]
impl<T: AsRef<[u8]>, S: StateID> fmt::Debug for Repr<T, S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fn state_status<T: AsRef<[u8]>, S: StateID>(
            dfa: &Repr<T, S>,
            id: S,
        ) -> &'static str {
            if id == dead_id() {
                if dfa.is_match_state(id) {
                    "D*"
                } else {
                    "D "
                }
            } else if id == dfa.start_state() {
                if dfa.is_match_state(id) {
                    ">*"
                } else {
                    "> "
                }
            } else {
                if dfa.is_match_state(id) {
                    " *"
                } else {
                    "  "
                }
            }
        }

        writeln!(f, "SparseDFA(")?;
        for (id, state) in self.states() {
            let status = state_status(self, id);
            writeln!(f, "{}{:06}: {:?}", status, id.to_usize(), state)?;
        }
        writeln!(f, ")")?;
        Ok(())
    }
}

/// An iterator over all states in a sparse DFA.
///
/// This iterator yields tuples, where the first element is the state ID and
/// the second element is the state itself.
#[cfg(feature = "std")]
#[derive(Debug)]
struct StateIter<'a, T: AsRef<[u8]> + 'a, S: StateID + 'a = usize> {
    dfa: &'a Repr<T, S>,
    id: S,
}

#[cfg(feature = "std")]
impl<'a, T: AsRef<[u8]>, S: StateID> Iterator for StateIter<'a, T, S> {
    type Item = (S, State<'a, S>);

    fn next(&mut self) -> Option<(S, State<'a, S>)> {
        if self.id.to_usize() >= self.dfa.trans().len() {
            return None;
        }
        let id = self.id;
        let state = self.dfa.state(id);
        self.id = S::from_usize(self.id.to_usize() + state.bytes());
        Some((id, state))
    }
}

/// A representation of a sparse DFA state that can be cheaply materialized
/// from a state identifier.
#[derive(Clone)]
struct State<'a, S: StateID = usize> {
    /// The state identifier representation used by the DFA from which this
    /// state was extracted. Since our transition table is compacted in a
    /// &[u8], we don't actually use the state ID type parameter explicitly
    /// anywhere, so we fake it. This prevents callers from using an incorrect
    /// state ID representation to read from this state.
    _state_id_repr: PhantomData<S>,
    /// The number of transitions in this state.
    ntrans: usize,
    /// Pairs of input ranges, where there is one pair for each transition.
    /// Each pair specifies an inclusive start and end byte range for the
    /// corresponding transition.
    input_ranges: &'a [u8],
    /// Transitions to the next state. This slice contains native endian
    /// encoded state identifiers, with `S` as the representation. Thus, there
    /// are `ntrans * size_of::<S>()` bytes in this slice.
    next: &'a [u8],
}

impl<'a, S: StateID> State<'a, S> {
    /// Searches for the next transition given an input byte. If no such
    /// transition could be found, then a dead state is returned.
    fn next(&self, input: u8) -> S {
        // This straight linear search was observed to be much better than
        // binary search on ASCII haystacks, likely because a binary search
        // visits the ASCII case last but a linear search sees it first. A
        // binary search does do a little better on non-ASCII haystacks, but
        // not by much. There might be a better trade off lurking here.
        for i in 0..self.ntrans {
            let (start, end) = self.range(i);
            if start <= input && input <= end {
                return self.next_at(i);
            }
            // We could bail early with an extra branch: if input < b1, then
            // we know we'll never find a matching transition. Interestingly,
            // this extra branch seems to not help performance, or will even
            // hurt it. It's likely very dependent on the DFA itself and what
            // is being searched.
        }
        dead_id()
    }

    /// Returns the inclusive input byte range for the ith transition in this
    /// state.
    fn range(&self, i: usize) -> (u8, u8) {
        (self.input_ranges[i * 2], self.input_ranges[i * 2 + 1])
    }

    /// Returns the next state for the ith transition in this state.
    fn next_at(&self, i: usize) -> S {
        S::read_bytes(&self.next[i * size_of::<S>()..])
    }

    /// Return the total number of bytes that this state consumes in its
    /// encoded form.
    #[cfg(feature = "std")]
    fn bytes(&self) -> usize {
        2 + (self.ntrans * 2) + (self.ntrans * size_of::<S>())
    }
}

#[cfg(feature = "std")]
impl<'a, S: StateID> fmt::Debug for State<'a, S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut transitions = vec![];
        for i in 0..self.ntrans {
            let next = self.next_at(i);
            if next == dead_id() {
                continue;
            }

            let (start, end) = self.range(i);
            if start == end {
                transitions.push(format!(
                    "{} => {}",
                    escape(start),
                    next.to_usize()
                ));
            } else {
                transitions.push(format!(
                    "{}-{} => {}",
                    escape(start),
                    escape(end),
                    next.to_usize(),
                ));
            }
        }
        write!(f, "{}", transitions.join(", "))
    }
}

/// A representation of a mutable sparse DFA state that can be cheaply
/// materialized from a state identifier.
#[cfg(feature = "std")]
struct StateMut<'a, S: StateID = usize> {
    /// The state identifier representation used by the DFA from which this
    /// state was extracted. Since our transition table is compacted in a
    /// &[u8], we don't actually use the state ID type parameter explicitly
    /// anywhere, so we fake it. This prevents callers from using an incorrect
    /// state ID representation to read from this state.
    _state_id_repr: PhantomData<S>,
    /// The number of transitions in this state.
    ntrans: usize,
    /// Pairs of input ranges, where there is one pair for each transition.
    /// Each pair specifies an inclusive start and end byte range for the
    /// corresponding transition.
    input_ranges: &'a mut [u8],
    /// Transitions to the next state. This slice contains native endian
    /// encoded state identifiers, with `S` as the representation. Thus, there
    /// are `ntrans * size_of::<S>()` bytes in this slice.
    next: &'a mut [u8],
}

#[cfg(feature = "std")]
impl<'a, S: StateID> StateMut<'a, S> {
    /// Sets the ith transition to the given state.
    fn set_next_at(&mut self, i: usize, next: S) {
        next.write_bytes(&mut self.next[i * size_of::<S>()..]);
    }
}

#[cfg(feature = "std")]
impl<'a, S: StateID> fmt::Debug for StateMut<'a, S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let state = State {
            _state_id_repr: self._state_id_repr,
            ntrans: self.ntrans,
            input_ranges: self.input_ranges,
            next: self.next,
        };
        fmt::Debug::fmt(&state, f)
    }
}

/// Return the given byte as its escaped string form.
#[cfg(feature = "std")]
fn escape(b: u8) -> String {
    use std::ascii;

    String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap()
}

/// A binary search routine specialized specifically to a sparse DFA state's
/// transitions. Specifically, the transitions are defined as a set of pairs
/// of input bytes that delineate an inclusive range of bytes. If the input
/// byte is in the range, then the corresponding transition is a match.
///
/// This binary search accepts a slice of these pairs and returns the position
/// of the matching pair (the ith transition), or None if no matching pair
/// could be found.
///
/// Note that this routine is not currently used since it was observed to
/// either decrease performance when searching ASCII, or did not provide enough
/// of a boost on non-ASCII haystacks to be worth it. However, we leave it here
/// for posterity in case we can find a way to use it.
///
/// In theory, we could use the standard library's search routine if we could
/// cast a `&[u8]` to a `&[(u8, u8)]`, but I don't believe this is currently
/// guaranteed to be safe and is thus UB (since I don't think the in-memory
/// representation of `(u8, u8)` has been nailed down).
#[inline(always)]
#[allow(dead_code)]
fn binary_search_ranges(ranges: &[u8], needle: u8) -> Option<usize> {
    debug_assert!(ranges.len() % 2 == 0, "ranges must have even length");
    debug_assert!(ranges.len() <= 512, "ranges should be short");

    let (mut left, mut right) = (0, ranges.len() / 2);
    while left < right {
        let mid = (left + right) / 2;
        let (b1, b2) = (ranges[mid * 2], ranges[mid * 2 + 1]);
        if needle < b1 {
            right = mid;
        } else if needle > b2 {
            left = mid + 1;
        } else {
            return Some(mid);
        }
    }
    None
}