regex_automata/regex.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
#[cfg(feature = "std")]
use dense::{self, DenseDFA};
use dfa::DFA;
#[cfg(feature = "std")]
use error::Result;
#[cfg(feature = "std")]
use sparse::SparseDFA;
#[cfg(feature = "std")]
use state_id::StateID;
/// A regular expression that uses deterministic finite automata for fast
/// searching.
///
/// A regular expression is comprised of two DFAs, a "forward" DFA and a
/// "reverse" DFA. The forward DFA is responsible for detecting the end of a
/// match while the reverse DFA is responsible for detecting the start of a
/// match. Thus, in order to find the bounds of any given match, a forward
/// search must first be run followed by a reverse search. A match found by
/// the forward DFA guarantees that the reverse DFA will also find a match.
///
/// The type of the DFA used by a `Regex` corresponds to the `D` type
/// parameter, which must satisfy the [`DFA`](trait.DFA.html) trait. Typically,
/// `D` is either a [`DenseDFA`](enum.DenseDFA.html) or a
/// [`SparseDFA`](enum.SparseDFA.html), where dense DFAs use more memory but
/// search faster, while sparse DFAs use less memory but search more slowly.
///
/// By default, a regex's DFA type parameter is set to
/// `DenseDFA<Vec<usize>, usize>`. For most in-memory work loads, this is the
/// most convenient type that gives the best search performance.
///
/// # Sparse DFAs
///
/// Since a `Regex` is generic over the `DFA` trait, it can be used with any
/// kind of DFA. While this crate constructs dense DFAs by default, it is easy
/// enough to build corresponding sparse DFAs, and then build a regex from
/// them:
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// // First, build a regex that uses dense DFAs.
/// let dense_re = Regex::new("foo[0-9]+")?;
///
/// // Second, build sparse DFAs from the forward and reverse dense DFAs.
/// let fwd = dense_re.forward().to_sparse()?;
/// let rev = dense_re.reverse().to_sparse()?;
///
/// // Third, build a new regex from the constituent sparse DFAs.
/// let sparse_re = Regex::from_dfas(fwd, rev);
///
/// // A regex that uses sparse DFAs can be used just like with dense DFAs.
/// assert_eq!(true, sparse_re.is_match(b"foo123"));
/// # Ok(()) }; example().unwrap()
/// ```
#[cfg(feature = "std")]
#[derive(Clone, Debug)]
pub struct Regex<D: DFA = DenseDFA<Vec<usize>, usize>> {
forward: D,
reverse: D,
}
/// A regular expression that uses deterministic finite automata for fast
/// searching.
///
/// A regular expression is comprised of two DFAs, a "forward" DFA and a
/// "reverse" DFA. The forward DFA is responsible for detecting the end of a
/// match while the reverse DFA is responsible for detecting the start of a
/// match. Thus, in order to find the bounds of any given match, a forward
/// search must first be run followed by a reverse search. A match found by
/// the forward DFA guarantees that the reverse DFA will also find a match.
///
/// The type of the DFA used by a `Regex` corresponds to the `D` type
/// parameter, which must satisfy the [`DFA`](trait.DFA.html) trait. Typically,
/// `D` is either a [`DenseDFA`](enum.DenseDFA.html) or a
/// [`SparseDFA`](enum.SparseDFA.html), where dense DFAs use more memory but
/// search faster, while sparse DFAs use less memory but search more slowly.
///
/// When using this crate without the standard library, the `Regex` type has
/// no default type parameter.
///
/// # Sparse DFAs
///
/// Since a `Regex` is generic over the `DFA` trait, it can be used with any
/// kind of DFA. While this crate constructs dense DFAs by default, it is easy
/// enough to build corresponding sparse DFAs, and then build a regex from
/// them:
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// // First, build a regex that uses dense DFAs.
/// let dense_re = Regex::new("foo[0-9]+")?;
///
/// // Second, build sparse DFAs from the forward and reverse dense DFAs.
/// let fwd = dense_re.forward().to_sparse()?;
/// let rev = dense_re.reverse().to_sparse()?;
///
/// // Third, build a new regex from the constituent sparse DFAs.
/// let sparse_re = Regex::from_dfas(fwd, rev);
///
/// // A regex that uses sparse DFAs can be used just like with dense DFAs.
/// assert_eq!(true, sparse_re.is_match(b"foo123"));
/// # Ok(()) }; example().unwrap()
/// ```
#[cfg(not(feature = "std"))]
#[derive(Clone, Debug)]
pub struct Regex<D> {
forward: D,
reverse: D,
}
#[cfg(feature = "std")]
impl Regex {
/// Parse the given regular expression using a default configuration and
/// return the corresponding regex.
///
/// The default configuration uses `usize` for state IDs, premultiplies
/// them and reduces the alphabet size by splitting bytes into equivalence
/// classes. The underlying DFAs are *not* minimized.
///
/// If you want a non-default configuration, then use the
/// [`RegexBuilder`](struct.RegexBuilder.html)
/// to set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let re = Regex::new("foo[0-9]+bar")?;
/// assert_eq!(Some((3, 14)), re.find(b"zzzfoo12345barzzz"));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn new(pattern: &str) -> Result<Regex> {
RegexBuilder::new().build(pattern)
}
}
#[cfg(feature = "std")]
impl Regex<SparseDFA<Vec<u8>, usize>> {
/// Parse the given regular expression using a default configuration and
/// return the corresponding regex using sparse DFAs.
///
/// The default configuration uses `usize` for state IDs, reduces the
/// alphabet size by splitting bytes into equivalence classes. The
/// underlying DFAs are *not* minimized.
///
/// If you want a non-default configuration, then use the
/// [`RegexBuilder`](struct.RegexBuilder.html)
/// to set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let re = Regex::new_sparse("foo[0-9]+bar")?;
/// assert_eq!(Some((3, 14)), re.find(b"zzzfoo12345barzzz"));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn new_sparse(
pattern: &str,
) -> Result<Regex<SparseDFA<Vec<u8>, usize>>> {
RegexBuilder::new().build_sparse(pattern)
}
}
impl<D: DFA> Regex<D> {
/// Returns true if and only if the given bytes match.
///
/// This routine may short circuit if it knows that scanning future input
/// will never lead to a different result. In particular, if the underlying
/// DFA enters a match state or a dead state, then this routine will return
/// `true` or `false`, respectively, without inspecting any future input.
///
/// # Example
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let re = Regex::new("foo[0-9]+bar")?;
/// assert_eq!(true, re.is_match(b"foo12345bar"));
/// assert_eq!(false, re.is_match(b"foobar"));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn is_match(&self, input: &[u8]) -> bool {
self.is_match_at(input, 0)
}
/// Returns the first position at which a match is found.
///
/// This routine stops scanning input in precisely the same circumstances
/// as `is_match`. The key difference is that this routine returns the
/// position at which it stopped scanning input if and only if a match
/// was found. If no match is found, then `None` is returned.
///
/// # Example
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let re = Regex::new("foo[0-9]+")?;
/// assert_eq!(Some(4), re.shortest_match(b"foo12345"));
///
/// // Normally, the end of the leftmost first match here would be 3,
/// // but the shortest match semantics detect a match earlier.
/// let re = Regex::new("abc|a")?;
/// assert_eq!(Some(1), re.shortest_match(b"abc"));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn shortest_match(&self, input: &[u8]) -> Option<usize> {
self.shortest_match_at(input, 0)
}
/// Returns the start and end offset of the leftmost first match. If no
/// match exists, then `None` is returned.
///
/// The "leftmost first" match corresponds to the match with the smallest
/// starting offset, but where the end offset is determined by preferring
/// earlier branches in the original regular expression. For example,
/// `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam` will
/// match `Samwise` in `Samwise`.
///
/// Generally speaking, the "leftmost first" match is how most backtracking
/// regular expressions tend to work. This is in contrast to POSIX-style
/// regular expressions that yield "leftmost longest" matches. Namely,
/// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using
/// leftmost longest semantics.
///
/// # Example
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let re = Regex::new("foo[0-9]+")?;
/// assert_eq!(Some((3, 11)), re.find(b"zzzfoo12345zzz"));
///
/// // Even though a match is found after reading the first byte (`a`),
/// // the leftmost first match semantics demand that we find the earliest
/// // match that prefers earlier parts of the pattern over latter parts.
/// let re = Regex::new("abc|a")?;
/// assert_eq!(Some((0, 3)), re.find(b"abc"));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn find(&self, input: &[u8]) -> Option<(usize, usize)> {
self.find_at(input, 0)
}
/// Returns the same as `is_match`, but starts the search at the given
/// offset.
///
/// The significance of the starting point is that it takes the surrounding
/// context into consideration. For example, if the DFA is anchored, then
/// a match can only occur when `start == 0`.
pub fn is_match_at(&self, input: &[u8], start: usize) -> bool {
self.forward().is_match_at(input, start)
}
/// Returns the same as `shortest_match`, but starts the search at the
/// given offset.
///
/// The significance of the starting point is that it takes the surrounding
/// context into consideration. For example, if the DFA is anchored, then
/// a match can only occur when `start == 0`.
pub fn shortest_match_at(
&self,
input: &[u8],
start: usize,
) -> Option<usize> {
self.forward().shortest_match_at(input, start)
}
/// Returns the same as `find`, but starts the search at the given
/// offset.
///
/// The significance of the starting point is that it takes the surrounding
/// context into consideration. For example, if the DFA is anchored, then
/// a match can only occur when `start == 0`.
pub fn find_at(
&self,
input: &[u8],
start: usize,
) -> Option<(usize, usize)> {
let end = match self.forward().find_at(input, start) {
None => return None,
Some(end) => end,
};
let start = self
.reverse()
.rfind(&input[start..end])
.map(|i| start + i)
.expect("reverse search must match if forward search does");
Some((start, end))
}
/// Returns an iterator over all non-overlapping leftmost first matches
/// in the given bytes. If no match exists, then the iterator yields no
/// elements.
///
/// Note that if the regex can match the empty string, then it is
/// possible for the iterator to yield a zero-width match at a location
/// that is not a valid UTF-8 boundary (for example, between the code units
/// of a UTF-8 encoded codepoint). This can happen regardless of whether
/// [`allow_invalid_utf8`](struct.RegexBuilder.html#method.allow_invalid_utf8)
/// was enabled or not.
///
/// # Example
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let re = Regex::new("foo[0-9]+")?;
/// let text = b"foo1 foo12 foo123";
/// let matches: Vec<(usize, usize)> = re.find_iter(text).collect();
/// assert_eq!(matches, vec![(0, 4), (5, 10), (11, 17)]);
/// # Ok(()) }; example().unwrap()
/// ```
pub fn find_iter<'r, 't>(&'r self, input: &'t [u8]) -> Matches<'r, 't, D> {
Matches::new(self, input)
}
/// Build a new regex from its constituent forward and reverse DFAs.
///
/// This is useful when deserializing a regex from some arbitrary
/// memory region. This is also useful for building regexes from other
/// types of DFAs.
///
/// # Example
///
/// This example is a bit a contrived. The usual use of these methods
/// would involve serializing `initial_re` somewhere and then deserializing
/// it later to build a regex.
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let initial_re = Regex::new("foo[0-9]+")?;
/// assert_eq!(true, initial_re.is_match(b"foo123"));
///
/// let (fwd, rev) = (initial_re.forward(), initial_re.reverse());
/// let re = Regex::from_dfas(fwd, rev);
/// assert_eq!(true, re.is_match(b"foo123"));
/// # Ok(()) }; example().unwrap()
/// ```
///
/// This example shows how you might build smaller DFAs, and then use those
/// smaller DFAs to build a new regex.
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let initial_re = Regex::new("foo[0-9]+")?;
/// assert_eq!(true, initial_re.is_match(b"foo123"));
///
/// let fwd = initial_re.forward().to_u16()?;
/// let rev = initial_re.reverse().to_u16()?;
/// let re = Regex::from_dfas(fwd, rev);
/// assert_eq!(true, re.is_match(b"foo123"));
/// # Ok(()) }; example().unwrap()
/// ```
///
/// This example shows how to build a `Regex` that uses sparse DFAs instead
/// of dense DFAs:
///
/// ```
/// use regex_automata::Regex;
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let initial_re = Regex::new("foo[0-9]+")?;
/// assert_eq!(true, initial_re.is_match(b"foo123"));
///
/// let fwd = initial_re.forward().to_sparse()?;
/// let rev = initial_re.reverse().to_sparse()?;
/// let re = Regex::from_dfas(fwd, rev);
/// assert_eq!(true, re.is_match(b"foo123"));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn from_dfas(forward: D, reverse: D) -> Regex<D> {
Regex { forward, reverse }
}
/// Return the underlying DFA responsible for forward matching.
pub fn forward(&self) -> &D {
&self.forward
}
/// Return the underlying DFA responsible for reverse matching.
pub fn reverse(&self) -> &D {
&self.reverse
}
}
/// An iterator over all non-overlapping matches for a particular search.
///
/// The iterator yields a `(usize, usize)` value until no more matches could be
/// found. The first `usize` is the start of the match (inclusive) while the
/// second `usize` is the end of the match (exclusive).
///
/// `S` is the type used to represent state identifiers in the underlying
/// regex. The lifetime variables are as follows:
///
/// * `'r` is the lifetime of the regular expression value itself.
/// * `'t` is the lifetime of the text being searched.
#[derive(Clone, Debug)]
pub struct Matches<'r, 't, D: DFA + 'r> {
re: &'r Regex<D>,
text: &'t [u8],
last_end: usize,
last_match: Option<usize>,
}
impl<'r, 't, D: DFA> Matches<'r, 't, D> {
fn new(re: &'r Regex<D>, text: &'t [u8]) -> Matches<'r, 't, D> {
Matches { re, text, last_end: 0, last_match: None }
}
}
impl<'r, 't, D: DFA> Iterator for Matches<'r, 't, D> {
type Item = (usize, usize);
fn next(&mut self) -> Option<(usize, usize)> {
if self.last_end > self.text.len() {
return None;
}
let (s, e) = match self.re.find_at(self.text, self.last_end) {
None => return None,
Some((s, e)) => (s, e),
};
if s == e {
// This is an empty match. To ensure we make progress, start
// the next search at the smallest possible starting position
// of the next match following this one.
self.last_end = e + 1;
// Don't accept empty matches immediately following a match.
// Just move on to the next match.
if Some(e) == self.last_match {
return self.next();
}
} else {
self.last_end = e;
}
self.last_match = Some(e);
Some((s, e))
}
}
/// A builder for a regex based on deterministic finite automatons.
///
/// This builder permits configuring several aspects of the construction
/// process such as case insensitivity, Unicode support and various options
/// that impact the size of the underlying DFAs. In some cases, options (like
/// performing DFA minimization) can come with a substantial additional cost.
///
/// This builder generally constructs two DFAs, where one is responsible for
/// finding the end of a match and the other is responsible for finding the
/// start of a match. If you only need to detect whether something matched,
/// or only the end of a match, then you should use a
/// [`dense::Builder`](dense/struct.Builder.html)
/// to construct a single DFA, which is cheaper than building two DFAs.
#[cfg(feature = "std")]
#[derive(Clone, Debug)]
pub struct RegexBuilder {
dfa: dense::Builder,
}
#[cfg(feature = "std")]
impl RegexBuilder {
/// Create a new regex builder with the default configuration.
pub fn new() -> RegexBuilder {
RegexBuilder { dfa: dense::Builder::new() }
}
/// Build a regex from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
pub fn build(&self, pattern: &str) -> Result<Regex> {
self.build_with_size::<usize>(pattern)
}
/// Build a regex from the given pattern using sparse DFAs.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
pub fn build_sparse(
&self,
pattern: &str,
) -> Result<Regex<SparseDFA<Vec<u8>, usize>>> {
self.build_with_size_sparse::<usize>(pattern)
}
/// Build a regex from the given pattern using a specific representation
/// for the underlying DFA state IDs.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
///
/// The representation of state IDs is determined by the `S` type
/// parameter. In general, `S` is usually one of `u8`, `u16`, `u32`, `u64`
/// or `usize`, where `usize` is the default used for `build`. The purpose
/// of specifying a representation for state IDs is to reduce the memory
/// footprint of the underlying DFAs.
///
/// When using this routine, the chosen state ID representation will be
/// used throughout determinization and minimization, if minimization was
/// requested. Even if the minimized DFAs can fit into the chosen state ID
/// representation but the initial determinized DFA cannot, then this will
/// still return an error. To get a minimized DFA with a smaller state ID
/// representation, first build it with a bigger state ID representation,
/// and then shrink the sizes of the DFAs using one of its conversion
/// routines, such as [`DenseDFA::to_u16`](enum.DenseDFA.html#method.to_u16).
/// Finally, reconstitute the regex via
/// [`Regex::from_dfa`](struct.Regex.html#method.from_dfa).
pub fn build_with_size<S: StateID>(
&self,
pattern: &str,
) -> Result<Regex<DenseDFA<Vec<S>, S>>> {
let forward = self.dfa.build_with_size(pattern)?;
let reverse = self
.dfa
.clone()
.anchored(true)
.reverse(true)
.longest_match(true)
.build_with_size(pattern)?;
Ok(Regex::from_dfas(forward, reverse))
}
/// Build a regex from the given pattern using a specific representation
/// for the underlying DFA state IDs using sparse DFAs.
pub fn build_with_size_sparse<S: StateID>(
&self,
pattern: &str,
) -> Result<Regex<SparseDFA<Vec<u8>, S>>> {
let re = self.build_with_size(pattern)?;
let fwd = re.forward().to_sparse()?;
let rev = re.reverse().to_sparse()?;
Ok(Regex::from_dfas(fwd, rev))
}
/// Set whether matching must be anchored at the beginning of the input.
///
/// When enabled, a match must begin at the start of the input. When
/// disabled, the regex will act as if the pattern started with a `.*?`,
/// which enables a match to appear anywhere.
///
/// By default this is disabled.
pub fn anchored(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.anchored(yes);
self
}
/// Enable or disable the case insensitive flag by default.
///
/// By default this is disabled. It may alternatively be selectively
/// enabled in the regular expression itself via the `i` flag.
pub fn case_insensitive(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.case_insensitive(yes);
self
}
/// Enable verbose mode in the regular expression.
///
/// When enabled, verbose mode permits insigificant whitespace in many
/// places in the regular expression, as well as comments. Comments are
/// started using `#` and continue until the end of the line.
///
/// By default, this is disabled. It may be selectively enabled in the
/// regular expression by using the `x` flag regardless of this setting.
pub fn ignore_whitespace(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.ignore_whitespace(yes);
self
}
/// Enable or disable the "dot matches any character" flag by default.
///
/// By default this is disabled. It may alternatively be selectively
/// enabled in the regular expression itself via the `s` flag.
pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.dot_matches_new_line(yes);
self
}
/// Enable or disable the "swap greed" flag by default.
///
/// By default this is disabled. It may alternatively be selectively
/// enabled in the regular expression itself via the `U` flag.
pub fn swap_greed(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.swap_greed(yes);
self
}
/// Enable or disable the Unicode flag (`u`) by default.
///
/// By default this is **enabled**. It may alternatively be selectively
/// disabled in the regular expression itself via the `u` flag.
///
/// Note that unless `allow_invalid_utf8` is enabled (it's disabled by
/// default), a regular expression will fail to parse if Unicode mode is
/// disabled and a sub-expression could possibly match invalid UTF-8.
pub fn unicode(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.unicode(yes);
self
}
/// When enabled, the builder will permit the construction of a regular
/// expression that may match invalid UTF-8.
///
/// When disabled (the default), the builder is guaranteed to produce a
/// regex that will only ever match valid UTF-8 (otherwise, the builder
/// will return an error).
pub fn allow_invalid_utf8(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.allow_invalid_utf8(yes);
self
}
/// Set the nesting limit used for the regular expression parser.
///
/// The nesting limit controls how deep the abstract syntax tree is allowed
/// to be. If the AST exceeds the given limit (e.g., with too many nested
/// groups), then an error is returned by the parser.
///
/// The purpose of this limit is to act as a heuristic to prevent stack
/// overflow when building a finite automaton from a regular expression's
/// abstract syntax tree. In particular, construction currently uses
/// recursion. In the future, the implementation may stop using recursion
/// and this option will no longer be necessary.
///
/// This limit is not checked until the entire AST is parsed. Therefore,
/// if callers want to put a limit on the amount of heap space used, then
/// they should impose a limit on the length, in bytes, of the concrete
/// pattern string. In particular, this is viable since the parser will
/// limit itself to heap space proportional to the lenth of the pattern
/// string.
///
/// Note that a nest limit of `0` will return a nest limit error for most
/// patterns but not all. For example, a nest limit of `0` permits `a` but
/// not `ab`, since `ab` requires a concatenation AST item, which results
/// in a nest depth of `1`. In general, a nest limit is not something that
/// manifests in an obvious way in the concrete syntax, therefore, it
/// should not be used in a granular way.
pub fn nest_limit(&mut self, limit: u32) -> &mut RegexBuilder {
self.dfa.nest_limit(limit);
self
}
/// Minimize the underlying DFAs.
///
/// When enabled, the DFAs powering the resulting regex will be minimized
/// such that it is as small as possible.
///
/// Whether one enables minimization or not depends on the types of costs
/// you're willing to pay and how much you care about its benefits. In
/// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
/// space, where `n` is the number of DFA states and `k` is the alphabet
/// size. In practice, minimization can be quite costly in terms of both
/// space and time, so it should only be done if you're willing to wait
/// longer to produce a DFA. In general, you might want a minimal DFA in
/// the following circumstances:
///
/// 1. You would like to optimize for the size of the automaton. This can
/// manifest in one of two ways. Firstly, if you're converting the
/// DFA into Rust code (or a table embedded in the code), then a minimal
/// DFA will translate into a corresponding reduction in code size, and
/// thus, also the final compiled binary size. Secondly, if you are
/// building many DFAs and putting them on the heap, you'll be able to
/// fit more if they are smaller. Note though that building a minimal
/// DFA itself requires additional space; you only realize the space
/// savings once the minimal DFA is constructed (at which point, the
/// space used for minimization is freed).
/// 2. You've observed that a smaller DFA results in faster match
/// performance. Naively, this isn't guaranteed since there is no
/// inherent difference between matching with a bigger-than-minimal
/// DFA and a minimal DFA. However, a smaller DFA may make use of your
/// CPU's cache more efficiently.
/// 3. You are trying to establish an equivalence between regular
/// languages. The standard method for this is to build a minimal DFA
/// for each language and then compare them. If the DFAs are equivalent
/// (up to state renaming), then the languages are equivalent.
///
/// This option is disabled by default.
pub fn minimize(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.minimize(yes);
self
}
/// Premultiply state identifiers in the underlying DFA transition tables.
///
/// When enabled, state identifiers are premultiplied to point to their
/// corresponding row in the DFA's transition table. That is, given the
/// `i`th state, its corresponding premultiplied identifier is `i * k`
/// where `k` is the alphabet size of the DFA. (The alphabet size is at
/// most 256, but is in practice smaller if byte classes is enabled.)
///
/// When state identifiers are not premultiplied, then the identifier of
/// the `i`th state is `i`.
///
/// The advantage of premultiplying state identifiers is that is saves
/// a multiplication instruction per byte when searching with the DFA.
/// This has been observed to lead to a 20% performance benefit in
/// micro-benchmarks.
///
/// The primary disadvantage of premultiplying state identifiers is
/// that they require a larger integer size to represent. For example,
/// if your DFA has 200 states, then its premultiplied form requires
/// 16 bits to represent every possible state identifier, where as its
/// non-premultiplied form only requires 8 bits.
///
/// This option is enabled by default.
pub fn premultiply(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.premultiply(yes);
self
}
/// Shrink the size of the underlying DFA alphabet by mapping bytes to
/// their equivalence classes.
///
/// When enabled, each DFA will use a map from all possible bytes to their
/// corresponding equivalence class. Each equivalence class represents a
/// set of bytes that does not discriminate between a match and a non-match
/// in the DFA. For example, the pattern `[ab]+` has at least two
/// equivalence classes: a set containing `a` and `b` and a set containing
/// every byte except for `a` and `b`. `a` and `b` are in the same
/// equivalence classes because they never discriminate between a match
/// and a non-match.
///
/// The advantage of this map is that the size of the transition table can
/// be reduced drastically from `#states * 256 * sizeof(id)` to
/// `#states * k * sizeof(id)` where `k` is the number of equivalence
/// classes. As a result, total space usage can decrease substantially.
/// Moreover, since a smaller alphabet is used, compilation becomes faster
/// as well.
///
/// The disadvantage of this map is that every byte searched must be
/// passed through this map before it can be used to determine the next
/// transition. This has a small match time performance cost.
///
/// This option is enabled by default.
pub fn byte_classes(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.byte_classes(yes);
self
}
/// Apply best effort heuristics to shrink the NFA at the expense of more
/// time/memory.
///
/// This may be exposed in the future, but for now is exported for use in
/// the `regex-automata-debug` tool.
#[doc(hidden)]
pub fn shrink(&mut self, yes: bool) -> &mut RegexBuilder {
self.dfa.shrink(yes);
self
}
}
#[cfg(feature = "std")]
impl Default for RegexBuilder {
fn default() -> RegexBuilder {
RegexBuilder::new()
}
}