regex_automata/nfa/compiler.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
// This module provides an NFA compiler using Thompson's construction
// algorithm. The compiler takes a regex-syntax::Hir as input and emits an NFA
// graph as output. The NFA graph is structured in a way that permits it to be
// executed by a virtual machine and also used to efficiently build a DFA.
//
// The compiler deals with a slightly expanded set of NFA states that notably
// includes an empty node that has exactly one epsilon transition to the next
// state. In other words, it's a "goto" instruction if one views Thompson's NFA
// as a set of bytecode instructions. These goto instructions are removed in
// a subsequent phase before returning the NFA to the caller. The purpose of
// these empty nodes is that they make the construction algorithm substantially
// simpler to implement. We remove them before returning to the caller because
// they can represent substantial overhead when traversing the NFA graph
// (either while searching using the NFA directly or while building a DFA).
//
// In the future, it would be nice to provide a Glushkov compiler as well,
// as it would work well as a bit-parallel NFA for smaller regexes. But
// the Thompson construction is one I'm more familiar with and seems more
// straight-forward to deal with when it comes to large Unicode character
// classes.
//
// Internally, the compiler uses interior mutability to improve composition
// in the face of the borrow checker. In particular, we'd really like to be
// able to write things like this:
//
// self.c_concat(exprs.iter().map(|e| self.c(e)))
//
// Which elegantly uses iterators to build up a sequence of compiled regex
// sub-expressions and then hands it off to the concatenating compiler
// routine. Without interior mutability, the borrow checker won't let us
// borrow `self` mutably both inside and outside the closure at the same
// time.
use std::cell::RefCell;
use std::mem;
use regex_syntax::hir::{self, Hir, HirKind};
use regex_syntax::utf8::{Utf8Range, Utf8Sequences};
use classes::ByteClassSet;
use error::{Error, Result};
use nfa::map::{Utf8BoundedMap, Utf8SuffixKey, Utf8SuffixMap};
use nfa::range_trie::RangeTrie;
use nfa::{State, StateID, Transition, NFA};
/// Config knobs for the NFA compiler. See the builder's methods for more
/// docs on each one.
#[derive(Clone, Copy, Debug)]
struct Config {
anchored: bool,
allow_invalid_utf8: bool,
reverse: bool,
shrink: bool,
}
impl Default for Config {
fn default() -> Config {
Config {
anchored: false,
allow_invalid_utf8: false,
reverse: false,
shrink: true,
}
}
}
/// A builder for compiling an NFA.
#[derive(Clone, Debug)]
pub struct Builder {
config: Config,
}
impl Builder {
/// Create a new NFA builder with its default configuration.
pub fn new() -> Builder {
Builder { config: Config::default() }
}
/// Compile the given high level intermediate representation of a regular
/// expression into an NFA.
///
/// If there was a problem building the NFA, then an error is returned.
/// For example, if the regex uses unsupported features (such as zero-width
/// assertions), then an error is returned.
pub fn build(&self, expr: &Hir) -> Result<NFA> {
let mut nfa = NFA::always_match();
self.build_with(&mut Compiler::new(), &mut nfa, expr)?;
Ok(nfa)
}
/// Compile the given high level intermediate representation of a regular
/// expression into the NFA given using the given compiler. Callers may
/// prefer this over `build` if they would like to reuse allocations while
/// compiling many regular expressions.
///
/// On success, the given NFA is completely overwritten with the NFA
/// produced by the compiler.
///
/// If there was a problem building the NFA, then an error is returned. For
/// example, if the regex uses unsupported features (such as zero-width
/// assertions), then an error is returned. When an error is returned,
/// the contents of `nfa` are unspecified and should not be relied upon.
/// However, it can still be reused in subsequent calls to this method.
pub fn build_with(
&self,
compiler: &mut Compiler,
nfa: &mut NFA,
expr: &Hir,
) -> Result<()> {
compiler.clear();
compiler.configure(self.config);
compiler.compile(nfa, expr)
}
/// Set whether matching must be anchored at the beginning of the input.
///
/// When enabled, a match must begin at the start of the input. When
/// disabled, the NFA will act as if the pattern started with a `.*?`,
/// which enables a match to appear anywhere.
///
/// By default this is disabled.
pub fn anchored(&mut self, yes: bool) -> &mut Builder {
self.config.anchored = yes;
self
}
/// When enabled, the builder will permit the construction of an NFA that
/// may match invalid UTF-8.
///
/// When disabled (the default), the builder is guaranteed to produce a
/// regex that will only ever match valid UTF-8 (otherwise, the builder
/// will return an error).
pub fn allow_invalid_utf8(&mut self, yes: bool) -> &mut Builder {
self.config.allow_invalid_utf8 = yes;
self
}
/// Reverse the NFA.
///
/// A NFA reversal is performed by reversing all of the concatenated
/// sub-expressions in the original pattern, recursively. The resulting
/// NFA can be used to match the pattern starting from the end of a string
/// instead of the beginning of a string.
///
/// Reversing the NFA is useful for building a reverse DFA, which is most
/// useful for finding the start of a match.
pub fn reverse(&mut self, yes: bool) -> &mut Builder {
self.config.reverse = yes;
self
}
/// Apply best effort heuristics to shrink the NFA at the expense of more
/// time/memory.
///
/// This is enabled by default. Generally speaking, if one is using an NFA
/// to compile DFA, then the extra time used to shrink the NFA will be
/// more than made up for during DFA construction (potentially by a lot).
/// In other words, enabling this can substantially decrease the overall
/// amount of time it takes to build a DFA.
///
/// The only reason to disable this if you want to compile an NFA and start
/// using it as quickly as possible without needing to build a DFA.
pub fn shrink(&mut self, yes: bool) -> &mut Builder {
self.config.shrink = yes;
self
}
}
/// A compiler that converts a regex abstract syntax to an NFA via Thompson's
/// construction. Namely, this compiler permits epsilon transitions between
/// states.
///
/// Users of this crate cannot use a compiler directly. Instead, all one can
/// do is create one and use it via the
/// [`Builder::build_with`](struct.Builder.html#method.build_with)
/// method. This permits callers to reuse compilers in order to amortize
/// allocations.
#[derive(Clone, Debug)]
pub struct Compiler {
/// The set of compiled NFA states. Once a state is compiled, it is
/// assigned a state ID equivalent to its index in this list. Subsequent
/// compilation can modify previous states by adding new transitions.
states: RefCell<Vec<CState>>,
/// The configuration from the builder.
config: Config,
/// State used for compiling character classes to UTF-8 byte automata.
/// State is not retained between character class compilations. This just
/// serves to amortize allocation to the extent possible.
utf8_state: RefCell<Utf8State>,
/// State used for arranging character classes in reverse into a trie.
trie_state: RefCell<RangeTrie>,
/// State used for caching common suffixes when compiling reverse UTF-8
/// automata (for Unicode character classes).
utf8_suffix: RefCell<Utf8SuffixMap>,
/// A map used to re-map state IDs when translating the compiler's internal
/// NFA state representation to the external NFA representation.
remap: RefCell<Vec<StateID>>,
/// A set of compiler internal state IDs that correspond to states that are
/// exclusively epsilon transitions, i.e., goto instructions, combined with
/// the state that they point to. This is used to record said states while
/// transforming the compiler's internal NFA representation to the external
/// form.
empties: RefCell<Vec<(StateID, StateID)>>,
}
/// A compiler intermediate state representation for an NFA that is only used
/// during compilation. Once compilation is done, `CState`s are converted to
/// `State`s, which have a much simpler representation.
#[derive(Clone, Debug, Eq, PartialEq)]
enum CState {
/// An empty state whose only purpose is to forward the automaton to
/// another state via en epsilon transition. These are useful during
/// compilation but are otherwise removed at the end.
Empty { next: StateID },
/// A state that only transitions to `next` if the current input byte is
/// in the range `[start, end]` (inclusive on both ends).
Range { range: Transition },
/// A state with possibly many transitions, represented in a sparse
/// fashion. Transitions are ordered lexicographically by input range.
/// As such, this may only be used when every transition has equal
/// priority. (In practice, this is only used for encoding large UTF-8
/// automata.)
Sparse { ranges: Vec<Transition> },
/// An alternation such that there exists an epsilon transition to all
/// states in `alternates`, where matches found via earlier transitions
/// are preferred over later transitions.
Union { alternates: Vec<StateID> },
/// An alternation such that there exists an epsilon transition to all
/// states in `alternates`, where matches found via later transitions
/// are preferred over earlier transitions.
///
/// This "reverse" state exists for convenience during compilation that
/// permits easy construction of non-greedy combinations of NFA states.
/// At the end of compilation, Union and UnionReverse states are merged
/// into one Union type of state, where the latter has its epsilon
/// transitions reversed to reflect the priority inversion.
UnionReverse { alternates: Vec<StateID> },
/// A match state. There is exactly one such occurrence of this state in
/// an NFA.
Match,
}
/// A value that represents the result of compiling a sub-expression of a
/// regex's HIR. Specifically, this represents a sub-graph of the NFA that
/// has an initial state at `start` and a final state at `end`.
#[derive(Clone, Copy, Debug)]
pub struct ThompsonRef {
start: StateID,
end: StateID,
}
impl Compiler {
/// Create a new compiler.
pub fn new() -> Compiler {
Compiler {
states: RefCell::new(vec![]),
config: Config::default(),
utf8_state: RefCell::new(Utf8State::new()),
trie_state: RefCell::new(RangeTrie::new()),
utf8_suffix: RefCell::new(Utf8SuffixMap::new(1000)),
remap: RefCell::new(vec![]),
empties: RefCell::new(vec![]),
}
}
/// Clear any memory used by this compiler such that it is ready to compile
/// a new regex.
///
/// It is preferrable to reuse a compiler if possible in order to reuse
/// allocations.
fn clear(&self) {
self.states.borrow_mut().clear();
// We don't need to clear anything else since they are cleared on
// their own and only when they are used.
}
/// Configure this compiler from the builder's knobs.
///
/// The compiler is always reconfigured by the builder before using it to
/// build an NFA.
fn configure(&mut self, config: Config) {
self.config = config;
}
/// Convert the current intermediate NFA to its final compiled form.
fn compile(&self, nfa: &mut NFA, expr: &Hir) -> Result<()> {
nfa.anchored = self.config.anchored;
let mut start = self.add_empty();
if !nfa.anchored {
let compiled = if self.config.allow_invalid_utf8 {
self.c_unanchored_prefix_invalid_utf8()?
} else {
self.c_unanchored_prefix_valid_utf8()?
};
self.patch(start, compiled.start);
start = compiled.end;
}
let compiled = self.c(&expr)?;
let match_id = self.add_match();
self.patch(start, compiled.start);
self.patch(compiled.end, match_id);
self.finish(nfa);
Ok(())
}
/// Finishes the compilation process and populates the provide NFA with
/// the final graph.
fn finish(&self, nfa: &mut NFA) {
let mut bstates = self.states.borrow_mut();
let mut remap = self.remap.borrow_mut();
remap.resize(bstates.len(), 0);
let mut empties = self.empties.borrow_mut();
empties.clear();
// We don't reuse allocations here becuase this is what we're
// returning.
nfa.states.clear();
let mut byteset = ByteClassSet::new();
// The idea here is to convert our intermediate states to their final
// form. The only real complexity here is the process of converting
// transitions, which are expressed in terms of state IDs. The new
// set of states will be smaller because of partial epsilon removal,
// so the state IDs will not be the same.
for (id, bstate) in bstates.iter_mut().enumerate() {
match *bstate {
CState::Empty { next } => {
// Since we're removing empty states, we need to handle
// them later since we don't yet know which new state this
// empty state will be mapped to.
empties.push((id, next));
}
CState::Range { ref range } => {
remap[id] = nfa.states.len();
byteset.set_range(range.start, range.end);
nfa.states.push(State::Range { range: range.clone() });
}
CState::Sparse { ref mut ranges } => {
remap[id] = nfa.states.len();
let ranges = mem::replace(ranges, vec![]);
for r in &ranges {
byteset.set_range(r.start, r.end);
}
nfa.states.push(State::Sparse {
ranges: ranges.into_boxed_slice(),
});
}
CState::Union { ref mut alternates } => {
remap[id] = nfa.states.len();
let alternates = mem::replace(alternates, vec![]);
nfa.states.push(State::Union {
alternates: alternates.into_boxed_slice(),
});
}
CState::UnionReverse { ref mut alternates } => {
remap[id] = nfa.states.len();
let mut alternates = mem::replace(alternates, vec![]);
alternates.reverse();
nfa.states.push(State::Union {
alternates: alternates.into_boxed_slice(),
});
}
CState::Match => {
remap[id] = nfa.states.len();
nfa.states.push(State::Match);
}
}
}
for &(empty_id, mut empty_next) in empties.iter() {
// empty states can point to other empty states, forming a chain.
// So we must follow the chain until the end, which must end at
// a non-empty state, and therefore, a state that is correctly
// remapped. We are guaranteed to terminate because our compiler
// never builds a loop among empty states.
while let CState::Empty { next } = bstates[empty_next] {
empty_next = next;
}
remap[empty_id] = remap[empty_next];
}
for state in &mut nfa.states {
state.remap(&remap);
}
// The compiler always begins the NFA at the first state.
nfa.start = remap[0];
nfa.byte_classes = byteset.byte_classes();
}
fn c(&self, expr: &Hir) -> Result<ThompsonRef> {
match *expr.kind() {
HirKind::Empty => {
let id = self.add_empty();
Ok(ThompsonRef { start: id, end: id })
}
HirKind::Literal(hir::Literal::Unicode(ch)) => {
let mut buf = [0; 4];
let it = ch
.encode_utf8(&mut buf)
.as_bytes()
.iter()
.map(|&b| Ok(self.c_range(b, b)));
self.c_concat(it)
}
HirKind::Literal(hir::Literal::Byte(b)) => Ok(self.c_range(b, b)),
HirKind::Class(hir::Class::Bytes(ref cls)) => {
self.c_byte_class(cls)
}
HirKind::Class(hir::Class::Unicode(ref cls)) => {
self.c_unicode_class(cls)
}
HirKind::Repetition(ref rep) => self.c_repetition(rep),
HirKind::Group(ref group) => self.c(&*group.hir),
HirKind::Concat(ref exprs) => {
self.c_concat(exprs.iter().map(|e| self.c(e)))
}
HirKind::Alternation(ref exprs) => {
self.c_alternation(exprs.iter().map(|e| self.c(e)))
}
HirKind::Anchor(_) => Err(Error::unsupported_anchor()),
HirKind::WordBoundary(_) => Err(Error::unsupported_word()),
}
}
fn c_concat<I>(&self, mut it: I) -> Result<ThompsonRef>
where
I: DoubleEndedIterator<Item = Result<ThompsonRef>>,
{
let first =
if self.config.reverse { it.next_back() } else { it.next() };
let ThompsonRef { start, mut end } = match first {
Some(result) => result?,
None => return Ok(self.c_empty()),
};
loop {
let next =
if self.config.reverse { it.next_back() } else { it.next() };
let compiled = match next {
Some(result) => result?,
None => break,
};
self.patch(end, compiled.start);
end = compiled.end;
}
Ok(ThompsonRef { start, end })
}
fn c_alternation<I>(&self, mut it: I) -> Result<ThompsonRef>
where
I: Iterator<Item = Result<ThompsonRef>>,
{
let first = it.next().expect("alternations must be non-empty")?;
let second = match it.next() {
None => return Ok(first),
Some(result) => result?,
};
let union = self.add_union();
let end = self.add_empty();
self.patch(union, first.start);
self.patch(first.end, end);
self.patch(union, second.start);
self.patch(second.end, end);
for result in it {
let compiled = result?;
self.patch(union, compiled.start);
self.patch(compiled.end, end);
}
Ok(ThompsonRef { start: union, end })
}
fn c_repetition(&self, rep: &hir::Repetition) -> Result<ThompsonRef> {
match rep.kind {
hir::RepetitionKind::ZeroOrOne => {
self.c_zero_or_one(&rep.hir, rep.greedy)
}
hir::RepetitionKind::ZeroOrMore => {
self.c_at_least(&rep.hir, rep.greedy, 0)
}
hir::RepetitionKind::OneOrMore => {
self.c_at_least(&rep.hir, rep.greedy, 1)
}
hir::RepetitionKind::Range(ref rng) => match *rng {
hir::RepetitionRange::Exactly(count) => {
self.c_exactly(&rep.hir, count)
}
hir::RepetitionRange::AtLeast(m) => {
self.c_at_least(&rep.hir, rep.greedy, m)
}
hir::RepetitionRange::Bounded(min, max) => {
self.c_bounded(&rep.hir, rep.greedy, min, max)
}
},
}
}
fn c_bounded(
&self,
expr: &Hir,
greedy: bool,
min: u32,
max: u32,
) -> Result<ThompsonRef> {
let prefix = self.c_exactly(expr, min)?;
if min == max {
return Ok(prefix);
}
// It is tempting here to compile the rest here as a concatenation
// of zero-or-one matches. i.e., for `a{2,5}`, compile it as if it
// were `aaa?a?a?`. The problem here is that it leads to this program:
//
// >000000: 61 => 01
// 000001: 61 => 02
// 000002: alt(03, 04)
// 000003: 61 => 04
// 000004: alt(05, 06)
// 000005: 61 => 06
// 000006: alt(07, 08)
// 000007: 61 => 08
// 000008: MATCH
//
// And effectively, once you hit state 2, the epsilon closure will
// include states 3, 5, 5, 6, 7 and 8, which is quite a bit. It is
// better to instead compile it like so:
//
// >000000: 61 => 01
// 000001: 61 => 02
// 000002: alt(03, 08)
// 000003: 61 => 04
// 000004: alt(05, 08)
// 000005: 61 => 06
// 000006: alt(07, 08)
// 000007: 61 => 08
// 000008: MATCH
//
// So that the epsilon closure of state 2 is now just 3 and 8.
let empty = self.add_empty();
let mut prev_end = prefix.end;
for _ in min..max {
let union = if greedy {
self.add_union()
} else {
self.add_reverse_union()
};
let compiled = self.c(expr)?;
self.patch(prev_end, union);
self.patch(union, compiled.start);
self.patch(union, empty);
prev_end = compiled.end;
}
self.patch(prev_end, empty);
Ok(ThompsonRef { start: prefix.start, end: empty })
}
fn c_at_least(
&self,
expr: &Hir,
greedy: bool,
n: u32,
) -> Result<ThompsonRef> {
if n == 0 {
let union = if greedy {
self.add_union()
} else {
self.add_reverse_union()
};
let compiled = self.c(expr)?;
self.patch(union, compiled.start);
self.patch(compiled.end, union);
Ok(ThompsonRef { start: union, end: union })
} else if n == 1 {
let compiled = self.c(expr)?;
let union = if greedy {
self.add_union()
} else {
self.add_reverse_union()
};
self.patch(compiled.end, union);
self.patch(union, compiled.start);
Ok(ThompsonRef { start: compiled.start, end: union })
} else {
let prefix = self.c_exactly(expr, n - 1)?;
let last = self.c(expr)?;
let union = if greedy {
self.add_union()
} else {
self.add_reverse_union()
};
self.patch(prefix.end, last.start);
self.patch(last.end, union);
self.patch(union, last.start);
Ok(ThompsonRef { start: prefix.start, end: union })
}
}
fn c_zero_or_one(&self, expr: &Hir, greedy: bool) -> Result<ThompsonRef> {
let union =
if greedy { self.add_union() } else { self.add_reverse_union() };
let compiled = self.c(expr)?;
let empty = self.add_empty();
self.patch(union, compiled.start);
self.patch(union, empty);
self.patch(compiled.end, empty);
Ok(ThompsonRef { start: union, end: empty })
}
fn c_exactly(&self, expr: &Hir, n: u32) -> Result<ThompsonRef> {
let it = (0..n).map(|_| self.c(expr));
self.c_concat(it)
}
fn c_byte_class(&self, cls: &hir::ClassBytes) -> Result<ThompsonRef> {
let end = self.add_empty();
let mut trans = Vec::with_capacity(cls.ranges().len());
for r in cls.iter() {
trans.push(Transition {
start: r.start(),
end: r.end(),
next: end,
});
}
Ok(ThompsonRef { start: self.add_sparse(trans), end })
}
fn c_unicode_class(&self, cls: &hir::ClassUnicode) -> Result<ThompsonRef> {
// If all we have are ASCII ranges wrapped in a Unicode package, then
// there is zero reason to bring out the big guns. We can fit all ASCII
// ranges within a single sparse transition.
if cls.is_all_ascii() {
let end = self.add_empty();
let mut trans = Vec::with_capacity(cls.ranges().len());
for r in cls.iter() {
assert!(r.start() <= '\x7F');
assert!(r.end() <= '\x7F');
trans.push(Transition {
start: r.start() as u8,
end: r.end() as u8,
next: end,
});
}
Ok(ThompsonRef { start: self.add_sparse(trans), end })
} else if self.config.reverse {
if !self.config.shrink {
// When we don't want to spend the extra time shrinking, we
// compile the UTF-8 automaton in reverse using something like
// the "naive" approach, but will attempt to re-use common
// suffixes.
self.c_unicode_class_reverse_with_suffix(cls)
} else {
// When we want to shrink our NFA for reverse UTF-8 automata,
// we cannot feed UTF-8 sequences directly to the UTF-8
// compiler, since the UTF-8 compiler requires all sequences
// to be lexicographically sorted. Instead, we organize our
// sequences into a range trie, which can then output our
// sequences in the correct order. Unfortunately, building the
// range trie is fairly expensive (but not nearly as expensive
// as building a DFA). Hence the reason why the 'shrink' option
// exists, so that this path can be toggled off.
let mut trie = self.trie_state.borrow_mut();
trie.clear();
for rng in cls.iter() {
for mut seq in Utf8Sequences::new(rng.start(), rng.end()) {
seq.reverse();
trie.insert(seq.as_slice());
}
}
let mut utf8_state = self.utf8_state.borrow_mut();
let mut utf8c = Utf8Compiler::new(self, &mut *utf8_state);
trie.iter(|seq| {
utf8c.add(&seq);
});
Ok(utf8c.finish())
}
} else {
// In the forward direction, we always shrink our UTF-8 automata
// because we can stream it right into the UTF-8 compiler. There
// is almost no downside (in either memory or time) to using this
// approach.
let mut utf8_state = self.utf8_state.borrow_mut();
let mut utf8c = Utf8Compiler::new(self, &mut *utf8_state);
for rng in cls.iter() {
for seq in Utf8Sequences::new(rng.start(), rng.end()) {
utf8c.add(seq.as_slice());
}
}
Ok(utf8c.finish())
}
// For reference, the code below is the "naive" version of compiling a
// UTF-8 automaton. It is deliciously simple (and works for both the
// forward and reverse cases), but will unfortunately produce very
// large NFAs. When compiling a forward automaton, the size difference
// can sometimes be an order of magnitude. For example, the '\w' regex
// will generate about ~3000 NFA states using the naive approach below,
// but only 283 states when using the approach above. This is because
// the approach above actually compiles a *minimal* (or near minimal,
// because of the bounded hashmap) UTF-8 automaton.
//
// The code below is kept as a reference point in order to make it
// easier to understand the higher level goal here.
/*
let it = cls
.iter()
.flat_map(|rng| Utf8Sequences::new(rng.start(), rng.end()))
.map(|seq| {
let it = seq
.as_slice()
.iter()
.map(|rng| Ok(self.c_range(rng.start, rng.end)));
self.c_concat(it)
});
self.c_alternation(it);
*/
}
fn c_unicode_class_reverse_with_suffix(
&self,
cls: &hir::ClassUnicode,
) -> Result<ThompsonRef> {
// N.B. It would likely be better to cache common *prefixes* in the
// reverse direction, but it's not quite clear how to do that. The
// advantage of caching suffixes is that it does give us a win, and
// has a very small additional overhead.
let mut cache = self.utf8_suffix.borrow_mut();
cache.clear();
let union = self.add_union();
let alt_end = self.add_empty();
for urng in cls.iter() {
for seq in Utf8Sequences::new(urng.start(), urng.end()) {
let mut end = alt_end;
for brng in seq.as_slice() {
let key = Utf8SuffixKey {
from: end,
start: brng.start,
end: brng.end,
};
let hash = cache.hash(&key);
if let Some(id) = cache.get(&key, hash) {
end = id;
continue;
}
let compiled = self.c_range(brng.start, brng.end);
self.patch(compiled.end, end);
end = compiled.start;
cache.set(key, hash, end);
}
self.patch(union, end);
}
}
Ok(ThompsonRef { start: union, end: alt_end })
}
fn c_range(&self, start: u8, end: u8) -> ThompsonRef {
let id = self.add_range(start, end);
ThompsonRef { start: id, end: id }
}
fn c_empty(&self) -> ThompsonRef {
let id = self.add_empty();
ThompsonRef { start: id, end: id }
}
fn c_unanchored_prefix_valid_utf8(&self) -> Result<ThompsonRef> {
self.c(&Hir::repetition(hir::Repetition {
kind: hir::RepetitionKind::ZeroOrMore,
greedy: false,
hir: Box::new(Hir::any(false)),
}))
}
fn c_unanchored_prefix_invalid_utf8(&self) -> Result<ThompsonRef> {
self.c(&Hir::repetition(hir::Repetition {
kind: hir::RepetitionKind::ZeroOrMore,
greedy: false,
hir: Box::new(Hir::any(true)),
}))
}
fn patch(&self, from: StateID, to: StateID) {
match self.states.borrow_mut()[from] {
CState::Empty { ref mut next } => {
*next = to;
}
CState::Range { ref mut range } => {
range.next = to;
}
CState::Sparse { .. } => {
panic!("cannot patch from a sparse NFA state")
}
CState::Union { ref mut alternates } => {
alternates.push(to);
}
CState::UnionReverse { ref mut alternates } => {
alternates.push(to);
}
CState::Match => {}
}
}
fn add_empty(&self) -> StateID {
let id = self.states.borrow().len();
self.states.borrow_mut().push(CState::Empty { next: 0 });
id
}
fn add_range(&self, start: u8, end: u8) -> StateID {
let id = self.states.borrow().len();
let trans = Transition { start, end, next: 0 };
let state = CState::Range { range: trans };
self.states.borrow_mut().push(state);
id
}
fn add_sparse(&self, ranges: Vec<Transition>) -> StateID {
if ranges.len() == 1 {
let id = self.states.borrow().len();
let state = CState::Range { range: ranges[0] };
self.states.borrow_mut().push(state);
return id;
}
let id = self.states.borrow().len();
let state = CState::Sparse { ranges };
self.states.borrow_mut().push(state);
id
}
fn add_union(&self) -> StateID {
let id = self.states.borrow().len();
let state = CState::Union { alternates: vec![] };
self.states.borrow_mut().push(state);
id
}
fn add_reverse_union(&self) -> StateID {
let id = self.states.borrow().len();
let state = CState::UnionReverse { alternates: vec![] };
self.states.borrow_mut().push(state);
id
}
fn add_match(&self) -> StateID {
let id = self.states.borrow().len();
self.states.borrow_mut().push(CState::Match);
id
}
}
#[derive(Debug)]
struct Utf8Compiler<'a> {
nfac: &'a Compiler,
state: &'a mut Utf8State,
target: StateID,
}
#[derive(Clone, Debug)]
struct Utf8State {
compiled: Utf8BoundedMap,
uncompiled: Vec<Utf8Node>,
}
#[derive(Clone, Debug)]
struct Utf8Node {
trans: Vec<Transition>,
last: Option<Utf8LastTransition>,
}
#[derive(Clone, Debug)]
struct Utf8LastTransition {
start: u8,
end: u8,
}
impl Utf8State {
fn new() -> Utf8State {
Utf8State { compiled: Utf8BoundedMap::new(5000), uncompiled: vec![] }
}
fn clear(&mut self) {
self.compiled.clear();
self.uncompiled.clear();
}
}
impl<'a> Utf8Compiler<'a> {
fn new(nfac: &'a Compiler, state: &'a mut Utf8State) -> Utf8Compiler<'a> {
let target = nfac.add_empty();
state.clear();
let mut utf8c = Utf8Compiler { nfac, state, target };
utf8c.add_empty();
utf8c
}
fn finish(&mut self) -> ThompsonRef {
self.compile_from(0);
let node = self.pop_root();
let start = self.compile(node);
ThompsonRef { start, end: self.target }
}
fn add(&mut self, ranges: &[Utf8Range]) {
let prefix_len = ranges
.iter()
.zip(&self.state.uncompiled)
.take_while(|&(range, node)| {
node.last.as_ref().map_or(false, |t| {
(t.start, t.end) == (range.start, range.end)
})
})
.count();
assert!(prefix_len < ranges.len());
self.compile_from(prefix_len);
self.add_suffix(&ranges[prefix_len..]);
}
fn compile_from(&mut self, from: usize) {
let mut next = self.target;
while from + 1 < self.state.uncompiled.len() {
let node = self.pop_freeze(next);
next = self.compile(node);
}
self.top_last_freeze(next);
}
fn compile(&mut self, node: Vec<Transition>) -> StateID {
let hash = self.state.compiled.hash(&node);
if let Some(id) = self.state.compiled.get(&node, hash) {
return id;
}
let id = self.nfac.add_sparse(node.clone());
self.state.compiled.set(node, hash, id);
id
}
fn add_suffix(&mut self, ranges: &[Utf8Range]) {
assert!(!ranges.is_empty());
let last = self
.state
.uncompiled
.len()
.checked_sub(1)
.expect("non-empty nodes");
assert!(self.state.uncompiled[last].last.is_none());
self.state.uncompiled[last].last = Some(Utf8LastTransition {
start: ranges[0].start,
end: ranges[0].end,
});
for r in &ranges[1..] {
self.state.uncompiled.push(Utf8Node {
trans: vec![],
last: Some(Utf8LastTransition { start: r.start, end: r.end }),
});
}
}
fn add_empty(&mut self) {
self.state.uncompiled.push(Utf8Node { trans: vec![], last: None });
}
fn pop_freeze(&mut self, next: StateID) -> Vec<Transition> {
let mut uncompiled = self.state.uncompiled.pop().unwrap();
uncompiled.set_last_transition(next);
uncompiled.trans
}
fn pop_root(&mut self) -> Vec<Transition> {
assert_eq!(self.state.uncompiled.len(), 1);
assert!(self.state.uncompiled[0].last.is_none());
self.state.uncompiled.pop().expect("non-empty nodes").trans
}
fn top_last_freeze(&mut self, next: StateID) {
let last = self
.state
.uncompiled
.len()
.checked_sub(1)
.expect("non-empty nodes");
self.state.uncompiled[last].set_last_transition(next);
}
}
impl Utf8Node {
fn set_last_transition(&mut self, next: StateID) {
if let Some(last) = self.last.take() {
self.trans.push(Transition {
start: last.start,
end: last.end,
next,
});
}
}
}
#[cfg(test)]
mod tests {
use regex_syntax::hir::Hir;
use regex_syntax::ParserBuilder;
use super::{Builder, State, StateID, Transition, NFA};
fn parse(pattern: &str) -> Hir {
ParserBuilder::new().build().parse(pattern).unwrap()
}
fn build(pattern: &str) -> NFA {
Builder::new().anchored(true).build(&parse(pattern)).unwrap()
}
fn s_byte(byte: u8, next: StateID) -> State {
let trans = Transition { start: byte, end: byte, next };
State::Range { range: trans }
}
fn s_range(start: u8, end: u8, next: StateID) -> State {
let trans = Transition { start, end, next };
State::Range { range: trans }
}
fn s_sparse(ranges: &[(u8, u8, StateID)]) -> State {
let ranges = ranges
.iter()
.map(|&(start, end, next)| Transition { start, end, next })
.collect();
State::Sparse { ranges }
}
fn s_union(alts: &[StateID]) -> State {
State::Union { alternates: alts.to_vec().into_boxed_slice() }
}
fn s_match() -> State {
State::Match
}
#[test]
fn errors() {
// unsupported anchors
assert!(Builder::new().build(&parse(r"^")).is_err());
assert!(Builder::new().build(&parse(r"$")).is_err());
assert!(Builder::new().build(&parse(r"\A")).is_err());
assert!(Builder::new().build(&parse(r"\z")).is_err());
// unsupported word boundaries
assert!(Builder::new().build(&parse(r"\b")).is_err());
assert!(Builder::new().build(&parse(r"\B")).is_err());
assert!(Builder::new().build(&parse(r"(?-u)\b")).is_err());
}
// Test that building an unanchored NFA has an appropriate `.*?` prefix.
#[test]
fn compile_unanchored_prefix() {
// When the machine can only match valid UTF-8.
let nfa = Builder::new().anchored(false).build(&parse(r"a")).unwrap();
// There should be many states since the `.` in `.*?` matches any
// Unicode scalar value.
assert_eq!(11, nfa.len());
assert_eq!(nfa.states[10], s_match());
assert_eq!(nfa.states[9], s_byte(b'a', 10));
// When the machine can match invalid UTF-8.
let nfa = Builder::new()
.anchored(false)
.allow_invalid_utf8(true)
.build(&parse(r"a"))
.unwrap();
assert_eq!(
nfa.states,
&[
s_union(&[2, 1]),
s_range(0, 255, 0),
s_byte(b'a', 3),
s_match(),
]
);
}
#[test]
fn compile_empty() {
assert_eq!(build("").states, &[s_match(),]);
}
#[test]
fn compile_literal() {
assert_eq!(build("a").states, &[s_byte(b'a', 1), s_match(),]);
assert_eq!(
build("ab").states,
&[s_byte(b'a', 1), s_byte(b'b', 2), s_match(),]
);
assert_eq!(
build("ā").states,
&[s_byte(0xE2, 1), s_byte(0x98, 2), s_byte(0x83, 3), s_match(),]
);
// Check that non-UTF-8 literals work.
let hir = ParserBuilder::new()
.allow_invalid_utf8(true)
.build()
.parse(r"(?-u)\xFF")
.unwrap();
let nfa = Builder::new()
.anchored(true)
.allow_invalid_utf8(true)
.build(&hir)
.unwrap();
assert_eq!(nfa.states, &[s_byte(b'\xFF', 1), s_match(),]);
}
#[test]
fn compile_class() {
assert_eq!(
build(r"[a-z]").states,
&[s_range(b'a', b'z', 1), s_match(),]
);
assert_eq!(
build(r"[x-za-c]").states,
&[s_sparse(&[(b'a', b'c', 1), (b'x', b'z', 1)]), s_match()]
);
assert_eq!(
build(r"[\u03B1-\u03B4]").states,
&[s_range(0xB1, 0xB4, 2), s_byte(0xCE, 0), s_match()]
);
assert_eq!(
build(r"[\u03B1-\u03B4\u{1F919}-\u{1F91E}]").states,
&[
s_range(0xB1, 0xB4, 5),
s_range(0x99, 0x9E, 5),
s_byte(0xA4, 1),
s_byte(0x9F, 2),
s_sparse(&[(0xCE, 0xCE, 0), (0xF0, 0xF0, 3)]),
s_match(),
]
);
assert_eq!(
build(r"[a-zā]").states,
&[
s_byte(0x83, 3),
s_byte(0x98, 0),
s_sparse(&[(b'a', b'z', 3), (0xE2, 0xE2, 1)]),
s_match(),
]
);
}
#[test]
fn compile_repetition() {
assert_eq!(
build(r"a?").states,
&[s_union(&[1, 2]), s_byte(b'a', 2), s_match(),]
);
assert_eq!(
build(r"a??").states,
&[s_union(&[2, 1]), s_byte(b'a', 2), s_match(),]
);
}
#[test]
fn compile_group() {
assert_eq!(
build(r"ab+").states,
&[s_byte(b'a', 1), s_byte(b'b', 2), s_union(&[1, 3]), s_match(),]
);
assert_eq!(
build(r"(ab)").states,
&[s_byte(b'a', 1), s_byte(b'b', 2), s_match(),]
);
assert_eq!(
build(r"(ab)+").states,
&[s_byte(b'a', 1), s_byte(b'b', 2), s_union(&[0, 3]), s_match(),]
);
}
#[test]
fn compile_alternation() {
assert_eq!(
build(r"a|b").states,
&[s_byte(b'a', 3), s_byte(b'b', 3), s_union(&[0, 1]), s_match(),]
);
assert_eq!(
build(r"|b").states,
&[s_byte(b'b', 2), s_union(&[2, 0]), s_match(),]
);
assert_eq!(
build(r"a|").states,
&[s_byte(b'a', 2), s_union(&[0, 2]), s_match(),]
);
}
}