regex_automata/minimize.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
use std::cell::RefCell;
use std::fmt;
use std::mem;
use std::rc::Rc;
use dense;
use state_id::{dead_id, StateID};
type DFARepr<S> = dense::Repr<Vec<S>, S>;
/// An implementation of Hopcroft's algorithm for minimizing DFAs.
///
/// The algorithm implemented here is mostly taken from Wikipedia:
/// https://en.wikipedia.org/wiki/DFA_minimization#Hopcroft's_algorithm
///
/// This code has had some light optimization attention paid to it,
/// particularly in the form of reducing allocation as much as possible.
/// However, it is still generally slow. Future optimization work should
/// probably focus on the bigger picture rather than micro-optimizations. For
/// example:
///
/// 1. Figure out how to more intelligently create initial partitions. That is,
/// Hopcroft's algorithm starts by creating two partitions of DFA states
/// that are known to NOT be equivalent: match states and non-match states.
/// The algorithm proceeds by progressively refining these partitions into
/// smaller partitions. If we could start with more partitions, then we
/// could reduce the amount of work that Hopcroft's algorithm needs to do.
/// 2. For every partition that we visit, we find all incoming transitions to
/// every state in the partition for *every* element in the alphabet. (This
/// is why using byte classes can significantly decrease minimization times,
/// since byte classes shrink the alphabet.) This is quite costly and there
/// is perhaps some redundant work being performed depending on the specific
/// states in the set. For example, we might be able to only visit some
/// elements of the alphabet based on the transitions.
/// 3. Move parts of minimization into determinization. If minimization has
/// fewer states to deal with, then it should run faster. A prime example
/// of this might be large Unicode classes, which are generated in way that
/// can create a lot of redundant states. (Some work has been done on this
/// point during NFA compilation via the algorithm described in the
/// "Incremental Construction of MinimalAcyclic Finite-State Automata"
/// paper.)
pub(crate) struct Minimizer<'a, S: 'a> {
dfa: &'a mut DFARepr<S>,
in_transitions: Vec<Vec<Vec<S>>>,
partitions: Vec<StateSet<S>>,
waiting: Vec<StateSet<S>>,
}
impl<'a, S: StateID> fmt::Debug for Minimizer<'a, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Minimizer")
.field("dfa", &self.dfa)
.field("in_transitions", &self.in_transitions)
.field("partitions", &self.partitions)
.field("waiting", &self.waiting)
.finish()
}
}
/// A set of states. A state set makes up a single partition in Hopcroft's
/// algorithm.
///
/// It is represented by an ordered set of state identifiers. We use shared
/// ownership so that a single state set can be in both the set of partitions
/// and in the set of waiting sets simultaneously without an additional
/// allocation. Generally, once a state set is built, it becomes immutable.
///
/// We use this representation because it avoids the overhead of more
/// traditional set data structures (HashSet/BTreeSet), and also because
/// computing intersection/subtraction on this representation is especially
/// fast.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
struct StateSet<S>(Rc<RefCell<Vec<S>>>);
impl<'a, S: StateID> Minimizer<'a, S> {
pub fn new(dfa: &'a mut DFARepr<S>) -> Minimizer<'a, S> {
let in_transitions = Minimizer::incoming_transitions(dfa);
let partitions = Minimizer::initial_partitions(dfa);
let waiting = vec![partitions[0].clone()];
Minimizer { dfa, in_transitions, partitions, waiting }
}
pub fn run(mut self) {
let mut incoming = StateSet::empty();
let mut scratch1 = StateSet::empty();
let mut scratch2 = StateSet::empty();
let mut newparts = vec![];
while let Some(set) = self.waiting.pop() {
for b in (0..self.dfa.alphabet_len()).map(|b| b as u8) {
self.find_incoming_to(b, &set, &mut incoming);
for p in 0..self.partitions.len() {
self.partitions[p].intersection(&incoming, &mut scratch1);
if scratch1.is_empty() {
newparts.push(self.partitions[p].clone());
continue;
}
self.partitions[p].subtract(&incoming, &mut scratch2);
if scratch2.is_empty() {
newparts.push(self.partitions[p].clone());
continue;
}
let (x, y) =
(scratch1.deep_clone(), scratch2.deep_clone());
newparts.push(x.clone());
newparts.push(y.clone());
match self.find_waiting(&self.partitions[p]) {
Some(i) => {
self.waiting[i] = x;
self.waiting.push(y);
}
None => {
if x.len() <= y.len() {
self.waiting.push(x);
} else {
self.waiting.push(y);
}
}
}
}
newparts = mem::replace(&mut self.partitions, newparts);
newparts.clear();
}
}
// At this point, we now have a minimal partitioning of states, where
// each partition is an equivalence class of DFA states. Now we need to
// use this partioning to update the DFA to only contain one state for
// each partition.
// Create a map from DFA state ID to the representative ID of the
// equivalence class to which it belongs. The representative ID of an
// equivalence class of states is the minimum ID in that class.
let mut state_to_part = vec![dead_id(); self.dfa.state_count()];
for p in &self.partitions {
p.iter(|id| state_to_part[id.to_usize()] = p.min());
}
// Generate a new contiguous sequence of IDs for minimal states, and
// create a map from equivalence IDs to the new IDs. Thus, the new
// minimal ID of *any* state in the unminimized DFA can be obtained
// with minimals_ids[state_to_part[old_id]].
let mut minimal_ids = vec![dead_id(); self.dfa.state_count()];
let mut new_id = S::from_usize(0);
for (id, _) in self.dfa.states() {
if state_to_part[id.to_usize()] == id {
minimal_ids[id.to_usize()] = new_id;
new_id = S::from_usize(new_id.to_usize() + 1);
}
}
// The total number of states in the minimal DFA.
let minimal_count = new_id.to_usize();
// Re-map this DFA in place such that the only states remaining
// correspond to the representative states of every equivalence class.
for id in (0..self.dfa.state_count()).map(S::from_usize) {
// If this state isn't a representative for an equivalence class,
// then we skip it since it won't appear in the minimal DFA.
if state_to_part[id.to_usize()] != id {
continue;
}
for (_, next) in self.dfa.get_state_mut(id).iter_mut() {
*next = minimal_ids[state_to_part[next.to_usize()].to_usize()];
}
self.dfa.swap_states(id, minimal_ids[id.to_usize()]);
}
// Trim off all unused states from the pre-minimized DFA. This
// represents all states that were merged into a non-singleton
// equivalence class of states, and appeared after the first state
// in each such class. (Because the state with the smallest ID in each
// equivalence class is its representative ID.)
self.dfa.truncate_states(minimal_count);
// Update the new start state, which is now just the minimal ID of
// whatever state the old start state was collapsed into.
let old_start = self.dfa.start_state();
self.dfa.set_start_state(
minimal_ids[state_to_part[old_start.to_usize()].to_usize()],
);
// In order to update the ID of the maximum match state, we need to
// find the maximum ID among all of the match states in the minimized
// DFA. This is not necessarily the new ID of the unminimized maximum
// match state, since that could have been collapsed with a much
// earlier match state. Therefore, to find the new max match state,
// we iterate over all previous match states, find their corresponding
// new minimal ID, and take the maximum of those.
let old_max = self.dfa.max_match_state();
self.dfa.set_max_match_state(dead_id());
for id in (0..(old_max.to_usize() + 1)).map(S::from_usize) {
let part = state_to_part[id.to_usize()];
let new_id = minimal_ids[part.to_usize()];
if new_id > self.dfa.max_match_state() {
self.dfa.set_max_match_state(new_id);
}
}
}
fn find_waiting(&self, set: &StateSet<S>) -> Option<usize> {
self.waiting.iter().position(|s| s == set)
}
fn find_incoming_to(
&self,
b: u8,
set: &StateSet<S>,
incoming: &mut StateSet<S>,
) {
incoming.clear();
set.iter(|id| {
for &inid in &self.in_transitions[id.to_usize()][b as usize] {
incoming.add(inid);
}
});
incoming.canonicalize();
}
fn initial_partitions(dfa: &DFARepr<S>) -> Vec<StateSet<S>> {
let mut is_match = StateSet::empty();
let mut no_match = StateSet::empty();
for (id, _) in dfa.states() {
if dfa.is_match_state(id) {
is_match.add(id);
} else {
no_match.add(id);
}
}
let mut sets = vec![is_match];
if !no_match.is_empty() {
sets.push(no_match);
}
sets.sort_by_key(|s| s.len());
sets
}
fn incoming_transitions(dfa: &DFARepr<S>) -> Vec<Vec<Vec<S>>> {
let mut incoming = vec![];
for _ in dfa.states() {
incoming.push(vec![vec![]; dfa.alphabet_len()]);
}
for (id, state) in dfa.states() {
for (b, next) in state.transitions() {
incoming[next.to_usize()][b as usize].push(id);
}
}
incoming
}
}
impl<S: StateID> StateSet<S> {
fn empty() -> StateSet<S> {
StateSet(Rc::new(RefCell::new(vec![])))
}
fn add(&mut self, id: S) {
self.0.borrow_mut().push(id);
}
fn min(&self) -> S {
self.0.borrow()[0]
}
fn canonicalize(&mut self) {
self.0.borrow_mut().sort();
self.0.borrow_mut().dedup();
}
fn clear(&mut self) {
self.0.borrow_mut().clear();
}
fn len(&self) -> usize {
self.0.borrow().len()
}
fn is_empty(&self) -> bool {
self.len() == 0
}
fn deep_clone(&self) -> StateSet<S> {
let ids = self.0.borrow().iter().cloned().collect();
StateSet(Rc::new(RefCell::new(ids)))
}
fn iter<F: FnMut(S)>(&self, mut f: F) {
for &id in self.0.borrow().iter() {
f(id);
}
}
fn intersection(&self, other: &StateSet<S>, dest: &mut StateSet<S>) {
dest.clear();
if self.is_empty() || other.is_empty() {
return;
}
let (seta, setb) = (self.0.borrow(), other.0.borrow());
let (mut ita, mut itb) = (seta.iter().cloned(), setb.iter().cloned());
let (mut a, mut b) = (ita.next().unwrap(), itb.next().unwrap());
loop {
if a == b {
dest.add(a);
a = match ita.next() {
None => break,
Some(a) => a,
};
b = match itb.next() {
None => break,
Some(b) => b,
};
} else if a < b {
a = match ita.next() {
None => break,
Some(a) => a,
};
} else {
b = match itb.next() {
None => break,
Some(b) => b,
};
}
}
}
fn subtract(&self, other: &StateSet<S>, dest: &mut StateSet<S>) {
dest.clear();
if self.is_empty() || other.is_empty() {
self.iter(|s| dest.add(s));
return;
}
let (seta, setb) = (self.0.borrow(), other.0.borrow());
let (mut ita, mut itb) = (seta.iter().cloned(), setb.iter().cloned());
let (mut a, mut b) = (ita.next().unwrap(), itb.next().unwrap());
loop {
if a == b {
a = match ita.next() {
None => break,
Some(a) => a,
};
b = match itb.next() {
None => {
dest.add(a);
break;
}
Some(b) => b,
};
} else if a < b {
dest.add(a);
a = match ita.next() {
None => break,
Some(a) => a,
};
} else {
b = match itb.next() {
None => {
dest.add(a);
break;
}
Some(b) => b,
};
}
}
for a in ita {
dest.add(a);
}
}
}