1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! An implementation of Linux's Netlink API for Fuchsia.
//!
//! Netlink is a socket-based API provided by Linux that user space applications
//! can use to interact with the kernel. The API is split up into several
//! protocol families each offering different functionality. This crate targets
//! the implementation of families related to networking.

#![deny(missing_docs, unused)]

mod client;
mod errors;
pub(crate) mod eventloop;
pub mod interfaces;
pub(crate) mod logging;
pub mod messaging;
pub mod multicast_groups;
mod netlink_packet;
pub mod protocol_family;
mod routes;
mod rules;
pub(crate) mod util;

use fidl_fuchsia_net_interfaces as fnet_interfaces;
use fidl_fuchsia_net_root as fnet_root;
use fidl_fuchsia_net_routes_ext as fnet_routes_ext;
use fuchsia_async as fasync;
use fuchsia_component::client::connect_to_protocol;
use futures::{
    channel::mpsc::{self, UnboundedReceiver, UnboundedSender},
    future::Future,
    FutureExt as _, StreamExt as _,
};
use net_types::ip::{Ipv4, Ipv6};
use netlink_packet_route::RouteNetlinkMessage;

use crate::{
    client::{ClientIdGenerator, ClientTable, InternalClient},
    eventloop::EventLoop,
    logging::log_debug,
    messaging::{Receiver, Sender, SenderReceiverProvider},
    protocol_family::{
        route::{NetlinkRoute, NetlinkRouteClient, NetlinkRouteRequestHandler},
        NetlinkFamilyRequestHandler as _, ProtocolFamily,
    },
};

/// The tag added to all logs generated by this crate.
pub const NETLINK_LOG_TAG: &'static str = "netlink";

/// The implementation of the Netlink protocol suite.
pub struct Netlink<P: SenderReceiverProvider> {
    /// Generator of new Client IDs.
    id_generator: ClientIdGenerator,
    /// Sender to attach new `NETLINK_ROUTE` clients to the Netlink worker.
    route_client_sender: UnboundedSender<
        ClientWithReceiver<
            NetlinkRoute,
            P::Sender<<NetlinkRoute as ProtocolFamily>::InnerMessage>,
            P::Receiver<<NetlinkRoute as ProtocolFamily>::InnerMessage>,
        >,
    >,
}

impl<P: SenderReceiverProvider> Netlink<P> {
    /// Returns a newly instantiated [`Netlink`] and its asynchronous worker.
    ///
    /// Callers are responsible for polling the worker [`Future`], which drives
    /// the Netlink implementation's asynchronous work. The worker will never
    /// complete.
    pub fn new<H: interfaces::InterfacesHandler>(
        interfaces_handler: H,
    ) -> (Self, impl Future<Output = ()> + Send) {
        let (route_client_sender, route_client_receiver) = mpsc::unbounded();
        (
            Netlink { id_generator: ClientIdGenerator::default(), route_client_sender },
            run_netlink_worker(NetlinkWorkerParams::<_, P> {
                interfaces_handler,
                route_client_receiver,
            }),
        )
    }

    /// Creates a new client of the `NETLINK_ROUTE` protocol family.
    ///
    /// `sender` is used by Netlink to send messages to the client.
    /// `receiver` is used by Netlink to receive messages from the client.
    ///
    /// Closing the `receiver` will close this client, disconnecting `sender`.
    pub fn new_route_client(
        &self,
        sender: P::Sender<RouteNetlinkMessage>,
        receiver: P::Receiver<RouteNetlinkMessage>,
    ) -> Result<NetlinkRouteClient, NewClientError> {
        let Netlink { id_generator, route_client_sender } = self;
        let (external_client, internal_client) =
            client::new_client_pair::<NetlinkRoute, _>(id_generator.new_id(), sender);
        route_client_sender
            .unbounded_send(ClientWithReceiver { client: internal_client, receiver })
            .map_err(|e| {
                // Sending on an `UnboundedSender` can never fail with `is_full()`.
                debug_assert!(e.is_disconnected());
                NewClientError::Disconnected
            })?;
        Ok(NetlinkRouteClient(external_client))
    }
}

/// A wrapper to hold an [`InternalClient`], and its [`Receiver`] of requests.
struct ClientWithReceiver<
    F: ProtocolFamily,
    S: Sender<F::InnerMessage>,
    R: Receiver<F::InnerMessage>,
> {
    client: InternalClient<F, S>,
    receiver: R,
}

/// The possible error types when instantiating a new client.
pub enum NewClientError {
    /// The [`Netlink`] is disconnected from its associated worker, perhaps as a
    /// result of dropping the worker.
    Disconnected,
}

/// Parameters used to start the Netlink asynchronous worker.
struct NetlinkWorkerParams<H, P: SenderReceiverProvider> {
    interfaces_handler: H,
    /// Receiver of newly created `NETLINK_ROUTE` clients.
    route_client_receiver: UnboundedReceiver<
        ClientWithReceiver<
            NetlinkRoute,
            P::Sender<<NetlinkRoute as ProtocolFamily>::InnerMessage>,
            P::Receiver<<NetlinkRoute as ProtocolFamily>::InnerMessage>,
        >,
    >,
}

/// The worker encompassing all asynchronous Netlink work.
///
/// The worker is never expected to complete.
async fn run_netlink_worker<H: interfaces::InterfacesHandler, P: SenderReceiverProvider>(
    params: NetlinkWorkerParams<H, P>,
) {
    let NetlinkWorkerParams { interfaces_handler, route_client_receiver } = params;

    let route_clients = ClientTable::default();
    let (unified_request_sink, unified_request_stream) = mpsc::channel(1);

    let unified_event_loop = fasync::Task::spawn({
        let route_clients = route_clients.clone();
        async move {
            let interfaces_proxy = connect_to_protocol::<fnet_root::InterfacesMarker>()
                .expect("connect to fuchsia.net.root.Interfaces");
            let interfaces_state_proxy = connect_to_protocol::<fnet_interfaces::StateMarker>()
                .expect("connect to fuchsia.net.interfaces");
            let v4_routes_state =
                connect_to_protocol::<<Ipv4 as fnet_routes_ext::FidlRouteIpExt>::StateMarker>()
                    .expect("connect to fuchsia.net.routes");
            let v6_routes_state =
                connect_to_protocol::<<Ipv6 as fnet_routes_ext::FidlRouteIpExt>::StateMarker>()
                    .expect("connect to fuchsia.net.routes");
            let v4_routes_set_provider = connect_to_protocol::<
                <Ipv4 as fnet_routes_ext::admin::FidlRouteAdminIpExt>::RouteTableMarker,
            >()
            .expect("connect to fuchsia.net.routes.admin");
            let v6_routes_set_provider = connect_to_protocol::<
                <Ipv6 as fnet_routes_ext::admin::FidlRouteAdminIpExt>::RouteTableMarker,
            >()
            .expect("connect to fuchsia.net.routes.admin");

            let event_loop: EventLoop<H, P::Sender<_>> = EventLoop {
                interfaces_proxy,
                interfaces_state_proxy,
                v4_routes_state,
                v6_routes_state,
                v4_routes_set_provider,
                v6_routes_set_provider,
                route_clients,
                unified_request_stream,
                interfaces_handler,
            };

            match event_loop.run().await {
                Ok(never) => match never {},
                Err(e) => panic!("error running event loop: {e:?}"),
            }
        }
    });

    let _: Vec<()> = futures::future::join_all([
        // Accept new NETLINK_ROUTE clients.
        {
            let route_clients = route_clients.clone();
            fasync::Task::spawn(async move {
                connect_new_clients::<NetlinkRoute, _, _>(
                    route_clients,
                    route_client_receiver,
                    NetlinkRouteRequestHandler { unified_request_sink },
                )
                .await;
                panic!("route_client_receiver stream unexpectedly finished")
            })
        },
        unified_event_loop,
    ])
    .await;
}

/// Receives clients from the given receiver, adding them to the given table.
///
/// A "Request Handler" Task will be spawned for each received client. The given
/// `request_handler_impl` defines how the requests will be handled.
async fn connect_new_clients<
    F: ProtocolFamily,
    S: Sender<F::InnerMessage>,
    R: Receiver<F::InnerMessage>,
>(
    client_table: ClientTable<F, S>,
    client_receiver: UnboundedReceiver<ClientWithReceiver<F, S, R>>,
    request_handler_impl: F::RequestHandler<S>,
) {
    client_receiver
        // Drive each client concurrently with `for_each_concurrent`. Note that
        // because each client is spawned in a separate Task, they will run in
        // parallel.
        .for_each_concurrent(None, |ClientWithReceiver { client, receiver }| {
            client_table.add_client(client.clone());
            spawn_client_request_handler::<F, S, R>(client, receiver, request_handler_impl.clone())
                .then(|client| futures::future::ready(client_table.remove_client(client)))
        })
        .await
}

/// Spawns a [`Task`] to handle requests from the given client.
///
/// The task terminates when the underlying `Receiver` closes, yielding the
/// original client.
fn spawn_client_request_handler<
    F: ProtocolFamily,
    S: Sender<F::InnerMessage>,
    R: Receiver<F::InnerMessage>,
>(
    client: InternalClient<F, S>,
    receiver: R,
    handler: F::RequestHandler<S>,
) -> fasync::Task<InternalClient<F, S>> {
    // State needed to handle an individual request, that is cycled through the
    // `fold` combinator below.
    struct FoldState<C, H> {
        client: C,
        handler: H,
    }
    fasync::Task::spawn(
        // Use `fold` for two reasons. First, it processes requests serially,
        // ensuring requests are handled in order. Second, it allows us to
        // "hand-off" the client/handler from one request to the other, avoiding
        // copies for each request.
        receiver
            .fold(
                FoldState { client, handler },
                |FoldState { mut client, mut handler }, req| async {
                    log_debug!("{} Received request: {:?}", client, req);
                    handler.handle_request(req, &mut client).await;
                    FoldState { client, handler }
                },
            )
            .map(|FoldState { client, handler: _ }: FoldState<_, _>| client),
    )
}

#[cfg(test)]
mod tests {
    use super::*;

    use assert_matches::assert_matches;
    use std::pin::pin;

    use crate::{
        messaging::testutil::SentMessage,
        protocol_family::testutil::{
            new_fake_netlink_message, FakeNetlinkRequestHandler, FakeProtocolFamily,
        },
    };

    #[fasync::run_singlethreaded(test)]
    async fn test_spawn_client_request_handler() {
        let (mut req_sender, req_receiver) = mpsc::channel(0);
        let (mut client_sink, client) = crate::client::testutil::new_fake_client::<
            FakeProtocolFamily,
        >(crate::client::testutil::CLIENT_ID_1, &[]);

        let mut client_task = pin!(spawn_client_request_handler::<FakeProtocolFamily, _, _>(
            client,
            req_receiver,
            FakeNetlinkRequestHandler,
        )
        .fuse());

        assert_matches!((&mut client_task).now_or_never(), None);
        assert_eq!(&client_sink.take_messages()[..], &[]);

        // Send a message and expect to see the response on the `client_sink`.
        // NB: Use the sender's channel size as a synchronization method; If a
        // second message could be sent, the first *must* have been handled.
        req_sender.try_send(new_fake_netlink_message()).expect("should send without error");
        let mut could_send_fut =
            pin!(futures::future::poll_fn(|ctx| req_sender.poll_ready(ctx)).fuse());
        futures::select!(
            res = could_send_fut => res.expect("should be able to send without error"),
            _client = client_task => panic!("client task unexpectedly finished"),
        );
        assert_eq!(
            &client_sink.take_messages()[..],
            &[SentMessage::unicast(new_fake_netlink_message())]
        );

        // Close the sender, and expect the Task to exit.
        req_sender.close_channel();
        let _client = client_task.await;
        assert_eq!(&client_sink.take_messages()[..], &[]);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_connect_new_clients() {
        let client_table = ClientTable::default();
        let (client_sender, client_receiver) = futures::channel::mpsc::unbounded();
        let mut client_acceptor_fut = Box::pin(
            connect_new_clients::<FakeProtocolFamily, _, _>(
                client_table.clone(),
                client_receiver,
                FakeNetlinkRequestHandler,
            )
            .fuse(),
        );

        assert_eq!((&mut client_acceptor_fut).now_or_never(), None);

        // Connect Client 1.
        let (mut _client_sink1, client1) = crate::client::testutil::new_fake_client::<
            FakeProtocolFamily,
        >(crate::client::testutil::CLIENT_ID_1, &[]);
        let (mut req_sender1, req_receiver1) = mpsc::channel(0);
        client_sender
            .unbounded_send(ClientWithReceiver { client: client1, receiver: req_receiver1 })
            .expect("should send without error");

        // Connect Client 2.
        let (mut client_sink2, client2) = crate::client::testutil::new_fake_client::<
            FakeProtocolFamily,
        >(crate::client::testutil::CLIENT_ID_2, &[]);
        let (mut req_sender2, req_receiver2) = mpsc::channel(0);
        client_sender
            .unbounded_send(ClientWithReceiver { client: client2, receiver: req_receiver2 })
            .expect("should send without error");

        // Send a request to Client 2, and verify it's handled despite Client 1
        // being open (e.g. concurrent handling of requests across clients).
        // NB: Use the sender's channel size as a synchronization method; If a
        // second message could be sent, the first *must* have been handled.
        req_sender2.try_send(new_fake_netlink_message()).expect("should send without error");
        let mut could_send_fut =
            pin!(futures::future::poll_fn(|ctx| req_sender2.poll_ready(ctx)).fuse());
        futures::select!(
            res = could_send_fut => res.expect("should be able to send without error"),
            () = client_acceptor_fut => panic!("client acceptor unexpectedly finished"),
        );
        assert_eq!(
            &client_table.client_ids()[..],
            [client::testutil::CLIENT_ID_1, client::testutil::CLIENT_ID_2]
        );
        assert_eq!(
            &client_sink2.take_messages()[..],
            &[SentMessage::unicast(new_fake_netlink_message())]
        );

        // Close the two clients, and verify the acceptor fut is still pending.
        req_sender1.close_channel();
        req_sender2.close_channel();
        assert_eq!((&mut client_acceptor_fut).now_or_never(), None);

        // Close the client_sender, and verify the acceptor fut finishes.
        client_sender.close_channel();
        client_acceptor_fut.await;

        // Confirm the clients have been cleaned up from the client table.
        assert_eq!(&client_table.client_ids()[..], []);
    }
}