gpt/
header.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
//! GPT-header object and helper functions.

use crc::{crc32, Hasher32};
use log::*;
use std::collections::BTreeMap;
use std::fmt;
use std::fs::{File, OpenOptions};
use std::io::{Cursor, Error, ErrorKind, Read, Result, Seek, SeekFrom, Write};
use std::path::Path;

use crate::disk;
use crate::partition;

/// Header describing a GPT disk.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Header {
    /// GPT header magic signature, hardcoded to "EFI PART".
    pub signature: String, // Offset  0. "EFI PART", 45h 46h 49h 20h 50h 41h 52h 54h
    /// 00 00 01 00
    pub revision: u32, // Offset  8
    /// little endian
    pub header_size_le: u32, // Offset 12
    /// CRC32 of the header with crc32 section zeroed
    pub crc32: u32, // Offset 16
    /// must be 0
    pub reserved: u32, // Offset 20
    /// For main header, 1
    pub current_lba: u64, // Offset 24
    /// LBA for backup header
    pub backup_lba: u64, // Offset 32
    /// First usable LBA for partitions (primary table last LBA + 1)
    pub first_usable: u64, // Offset 40
    /// Last usable LBA (secondary partition table first LBA - 1)
    pub last_usable: u64, // Offset 48
    /// UUID of the disk
    pub disk_guid: uuid::Uuid, // Offset 56
    /// Starting LBA of partition entries
    pub part_start: u64, // Offset 72
    /// Number of partition entries
    pub num_parts: u32, // Offset 80
    /// Size of a partition entry, usually 128
    pub part_size: u32, // Offset 84
    /// CRC32 of the partition table
    pub crc32_parts: u32, // Offset 88
}

impl Header {
    pub(crate) fn compute_new(
        primary: bool,
        pp: &BTreeMap<u32, partition::Partition>,
        guid: uuid::Uuid,
        backup_offset: u64,
        original_header: &Option<Header>,
        lb_size: disk::LogicalBlockSize,
        num_parts: Option<u32>,
    ) -> Result<Self> {
        let (cur, bak) = if primary {
            (1, backup_offset)
        } else {
            (backup_offset, 1)
        };

        // really this number should actually usually be 128, as it is the
        // TOTAL number of entries in the partition table, NOT the number USED.
        // UEFI requires space for 128 minimum, but the number can be increased or reduced.
        // If we're creating the table from scratch, make sure the table contains enough
        // room to be UEFI compliant.
        let parts = match num_parts {
            Some(p) => {p}
            None => {
                match original_header {
                    Some(header) => header.num_parts,
                    None => (pp.iter().filter(|p| p.1.is_used()).count() as u32).max(128),
                }
            }
        };
        //though usually 128, it might be a different number
        let part_size = match original_header {
            Some(header) => header.part_size,
            None => 128,
        };

        let part_array_num_bytes = u64::from(parts * part_size);
        // If not an exact multiple of a sector, round up to the next # of whole sectors.
        let lb_size_u64 = Into::<u64>::into(lb_size);
        let part_array_num_lbs = (part_array_num_bytes + (lb_size_u64 - 1)) / lb_size_u64;

        // sometimes the first usable isn't sector 34, fdisk starts at 2048
        // alternatively, if the sector size is 4096 it might not be 34 either.
        // to align partition boundaries (https://metebalci.com/blog/a-quick-tour-of-guid-partition-table-gpt/)
        let first = match num_parts {
            Some(_) => 1 + 1 + part_array_num_lbs,
            None => {
                match original_header {
                    Some(header) => header.first_usable,
                    None => 1 + 1 + part_array_num_lbs, //protective MBR + GPT header + partition array
                }
            }
        };
        let last = match num_parts {
            Some(_) => {
                // last is inclusive: end of disk is (partition array) (backup header)
                backup_offset
                .checked_sub(part_array_num_lbs + 1)
                .ok_or_else(|| Error::new(ErrorKind::Other, "header underflow - last usable"))?
            },
            None => {
                match original_header {
                    Some(header) => header.last_usable,
                    None => {
                        // last is inclusive: end of disk is (partition array) (backup header)
                        backup_offset
                            .checked_sub(part_array_num_lbs + 1)
                            .ok_or_else(|| Error::new(ErrorKind::Other, "header underflow - last usable"))?
                    }
                }
            }
        };
        // the partition entry LBA starts at 2 (usually) for primary headers and at the last_usable + 1 for backup headers
        let part_start = if primary { 2 } else { last + 1 };

        let hdr = Header {
            signature: "EFI PART".to_string(),
            revision: 65536,
            header_size_le: 92,
            crc32: 0,
            reserved: 0,
            current_lba: cur,
            backup_lba: bak,
            first_usable: first,
            last_usable: last,
            disk_guid: guid,
            part_start,
            num_parts: parts,
            part_size,
            crc32_parts: 0,
        };

        Ok(hdr)
    }

    /// Write the primary header.
    ///
    /// With a CRC32 set to zero this will set the crc32 after
    /// writing the header out.
    pub fn write_primary<D: Read + Write + Seek>(
        &self,
        file: &mut D,
        lb_size: disk::LogicalBlockSize,
    ) -> Result<usize> {
        // This is the primary header. It must start before the backup one.
        if self.current_lba >= self.backup_lba {
            debug!(
                "current lba: {} backup_lba: {}",
                self.current_lba, self.backup_lba
            );
            return Err(Error::new(
                ErrorKind::Other,
                "primary header does not start before backup one",
            ));
        }
        self.file_write_header(file, self.current_lba, lb_size)
    }

    /// Write the backup header.
    ///
    /// With a CRC32 set to zero this will set the crc32 after
    /// writing the header out.
    pub fn write_backup<D: Read + Write + Seek>(
        &self,
        file: &mut D,
        lb_size: disk::LogicalBlockSize,
    ) -> Result<usize> {
        // This is the backup header. It must start after the primary one.
        if self.current_lba <= self.backup_lba {
            debug!(
                "current lba: {} backup_lba: {}",
                self.current_lba, self.backup_lba
            );
            return Err(Error::new(
                ErrorKind::Other,
                "backup header does not start after primary one",
            ));
        }
        self.file_write_header(file, self.current_lba, lb_size)
    }

    /// Write an header to an arbitrary LBA.
    ///
    /// With a CRC32 set to zero this will set the crc32 after
    /// writing the header out.
    fn file_write_header<D: Read + Write + Seek>(
        &self,
        file: &mut D,
        lba: u64,
        lb_size: disk::LogicalBlockSize,
    ) -> Result<usize> {
        // Build up byte array in memory
        let parts_checksum = partentry_checksum(file, self, lb_size)?;
        trace!("computed partitions CRC32: {:#x}", parts_checksum);
        let bytes = self.as_bytes(None, Some(parts_checksum))?;
        trace!("bytes before checksum: {:?}", bytes);

        // Calculate the CRC32 from the byte array
        let checksum = calculate_crc32(&bytes);
        trace!("computed header CRC32: {:#x}", checksum);

        // Write it to disk in 1 shot
        let start = lba
            .checked_mul(lb_size.into())
            .ok_or_else(|| Error::new(ErrorKind::Other, "header overflow - offset"))?;
        trace!("Seeking to {}", start);
        let _ = file.seek(SeekFrom::Start(start))?;
        let mut header_bytes = self.as_bytes(Some(checksum), Some(parts_checksum))?;
        // Per the spec, the rest of the logical block must be zeros...
        header_bytes.resize(Into::<usize>::into(lb_size), 0x00);
        let len = file.write(&header_bytes)?;
        trace!("Wrote {} bytes", len);

        Ok(len)
    }

    fn as_bytes(
        &self,
        header_checksum: Option<u32>,
        partitions_checksum: Option<u32>,
    ) -> Result<Vec<u8>> {
        let mut buff: Vec<u8> = Vec::new();
        let disk_guid_fields = self.disk_guid.as_fields();

        buff.write_all(self.signature.as_bytes())?;
        buff.write_all(&self.revision.to_le_bytes())?;
        buff.write_all(&self.header_size_le.to_le_bytes())?;
        match header_checksum {
            Some(c) => buff.write_all(&c.to_le_bytes())?,
            None => buff.write_all(&[0_u8; 4])?,
        };
        buff.write_all(&[0; 4])?;
        buff.write_all(&self.current_lba.to_le_bytes())?;
        buff.write_all(&self.backup_lba.to_le_bytes())?;
        buff.write_all(&self.first_usable.to_le_bytes())?;
        buff.write_all(&self.last_usable.to_le_bytes())?;
        buff.write_all(&disk_guid_fields.0.to_le_bytes())?;
        buff.write_all(&disk_guid_fields.1.to_le_bytes())?;
        buff.write_all(&disk_guid_fields.2.to_le_bytes())?;
        buff.write_all(disk_guid_fields.3)?;
        buff.write_all(&self.part_start.to_le_bytes())?;
        buff.write_all(&self.num_parts.to_le_bytes())?;
        buff.write_all(&self.part_size.to_le_bytes())?;
        match partitions_checksum {
            Some(c) => buff.write_all(&c.to_le_bytes())?,
            None => buff.write_all(&[0_u8; 4])?,
        };
        Ok(buff)
    }
}

/// Parses a uuid with first 3 portions in little endian.
pub fn parse_uuid(rdr: &mut Cursor<&[u8]>) -> Result<uuid::Uuid> {
    let d1: u32 = u32::from_le_bytes(read_exact_buff!(d1b, rdr, 4));
    let d2: u16 = u16::from_le_bytes(read_exact_buff!(d2b, rdr, 2));
    let d3: u16 = u16::from_le_bytes(read_exact_buff!(d3b, rdr, 2));
    let uuid = uuid::Uuid::from_fields(
        d1,
        d2,
        d3,
        &rdr.get_ref()[rdr.position() as usize..rdr.position() as usize + 8],
    );
    rdr.seek(SeekFrom::Current(8))?;

    match uuid {
        Ok(uuid) => Ok(uuid),
        Err(_) => Err(Error::new(ErrorKind::Other, "Invalid Disk UUID?")),
    }
}

impl fmt::Display for Header {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "Disk:\t\t{}\nCRC32:\t\t{}\nTable CRC:\t{}",
            self.disk_guid, self.crc32, self.crc32_parts
        )
    }
}

/// Read a GPT header from a given path.
///
/// ## Example
///
/// ```rust,no_run
/// use gpt::header::read_header;
///
/// let lb_size = gpt::disk::DEFAULT_SECTOR_SIZE;
/// let diskpath = std::path::Path::new("/dev/sdz");
///
/// let h = read_header(diskpath, lb_size).unwrap();
/// ```
pub fn read_header(
    path: impl AsRef<Path>,
    sector_size: disk::LogicalBlockSize
) -> Result<Header> {
    let mut file = File::open(path)?;
    read_primary_header(&mut file, sector_size)
}

/// Read a GPT header from any device capable of reading and seeking.
pub fn read_header_from_arbitrary_device<D: Read + Seek>(
    device: &mut D,
    sector_size: disk::LogicalBlockSize,
) -> Result<Header> {
    read_primary_header(device, sector_size)
}

pub(crate) fn read_primary_header<D: Read + Seek>(
    file: &mut D,
    sector_size: disk::LogicalBlockSize,
) -> Result<Header> {
    let cur = file.seek(SeekFrom::Current(0)).unwrap_or(0);
    let offset: u64 = sector_size.into();
    let res = file_read_header(file, offset);
    let _ = file.seek(SeekFrom::Start(cur));
    res
}

pub(crate) fn read_backup_header<D: Read + Seek>(
    file: &mut D,
    sector_size: disk::LogicalBlockSize,
) -> Result<Header> {
    let cur = file.seek(SeekFrom::Current(0)).unwrap_or(0);
    let h2sect = find_backup_lba(file, sector_size)?;
    let offset = h2sect
        .checked_mul(sector_size.into())
        .ok_or_else(|| Error::new(ErrorKind::Other, "backup header overflow - offset"))?;
    let res = file_read_header(file, offset);
    let _ = file.seek(SeekFrom::Start(cur));
    res
}

pub(crate) fn file_read_header<D: Read + Seek>(file: &mut D, offset: u64) -> Result<Header> {
    let _ = file.seek(SeekFrom::Start(offset));
    let mut hdr: [u8; 92] = [0; 92];

    let _ = file.read_exact(&mut hdr);
    let mut reader = Cursor::new(&hdr[..]);

    let sigstr = String::from_utf8_lossy(
        &reader.get_ref()[reader.position() as usize..reader.position() as usize + 8],
    );
    reader.seek(SeekFrom::Current(8))?;

    if sigstr != "EFI PART" {
        return Err(Error::new(ErrorKind::Other, "invalid GPT signature"));
    };

    let h = Header {
        signature: sigstr.to_string(),
        revision: u32::from_le_bytes(read_exact_buff!(rev, reader, 4)),
        header_size_le: u32::from_le_bytes(read_exact_buff!(hsle, reader, 4)),
        crc32: u32::from_le_bytes(read_exact_buff!(crc32, reader, 4)),
        reserved: u32::from_le_bytes(read_exact_buff!(reserv, reader, 4)),
        current_lba: u64::from_le_bytes(read_exact_buff!(clba, reader, 8)),
        backup_lba: u64::from_le_bytes(read_exact_buff!(blba, reader, 8)),
        first_usable: u64::from_le_bytes(read_exact_buff!(fusable, reader, 8)),
        last_usable: u64::from_le_bytes(read_exact_buff!(lusable, reader, 8)),
        disk_guid: parse_uuid(&mut reader)?,
        part_start: u64::from_le_bytes(read_exact_buff!(pstart, reader, 8)),
        // Note: this will always return the total number of partition entries
        // in the array, not how many are actually used
        num_parts: u32::from_le_bytes(read_exact_buff!(nparts, reader, 4)),
        part_size: u32::from_le_bytes(read_exact_buff!(partsize, reader, 4)),
        crc32_parts: u32::from_le_bytes(read_exact_buff!(crc32parts, reader, 4)),
    };
    trace!("header: {:?}", &hdr[..]);
    trace!("header gpt: {}", h.disk_guid.to_hyphenated().to_string());
    let mut hdr_crc = hdr;
    for crc_byte in hdr_crc.iter_mut().skip(16).take(4) {
        *crc_byte = 0;
    }
    let c = calculate_crc32(&hdr_crc);
    trace!("header CRC32: {:#x} - computed CRC32: {:#x}", h.crc32, c);
    if c == h.crc32 {
        Ok(h)
    } else {
        Err(Error::new(ErrorKind::Other, "invalid CRC32 checksum"))
    }
}

pub(crate) fn find_backup_lba<D: Read + Seek>(
    f: &mut D,
    sector_size: disk::LogicalBlockSize,
) -> Result<u64> {
    trace!("querying file size to find backup header location");
    let lb_size: u64 = sector_size.into();
    let old_pos = f.seek(std::io::SeekFrom::Current(0))?;
    let len = f.seek(std::io::SeekFrom::End(0))?;
    f.seek(std::io::SeekFrom::Start(old_pos))?;
    if len <= lb_size {
        return Err(Error::new(
            ErrorKind::Other,
            "disk image too small for backup header",
        ));
    }
    let bak_offset = len.saturating_sub(lb_size);
    let bak_lba = bak_offset / lb_size;
    trace!(
        "backup header: LBA={}, bytes offset={}",
        bak_lba,
        bak_offset
    );

    Ok(bak_lba)
}

fn calculate_crc32(b: &[u8]) -> u32 {
    let mut digest = crc32::Digest::new(crc32::IEEE);
    trace!("Writing buffer to digest calculator");
    digest.write(b);

    digest.sum32()
}

pub(crate) fn partentry_checksum<D: Read + Seek>(
    file: &mut D,
    hdr: &Header,
    lb_size: disk::LogicalBlockSize,
) -> Result<u32> {
    // Seek to start of partition table.
    trace!("Computing partition checksum");
    let start = hdr
        .part_start
        .checked_mul(lb_size.into())
        .ok_or_else(|| Error::new(ErrorKind::Other, "header overflow - partition table start"))?;
    trace!("Seek to {}", start);
    let _ = file.seek(SeekFrom::Start(start))?;

    // Read partition table.
    let pt_len = u64::from(hdr.num_parts)
        .checked_mul(hdr.part_size.into())
        .ok_or_else(|| Error::new(ErrorKind::Other, "partition table - size"))?;
    trace!("Reading {} bytes", pt_len);
    let mut buf = vec![0; pt_len as usize];
    file.read_exact(&mut buf)?;

    //trace!("Buffer before checksum: {:?}", buf);
    // Compute CRC32 over all table bits.
    Ok(calculate_crc32(&buf))
}

/// A helper function to create a new header and write it to disk.
/// If the uuid isn't given a random one will be generated.  Use
/// this in conjunction with Partition::write()
// TODO: Move this to Header::new() and Header::write to write it
// that will match the Partition::write() API
pub fn write_header(
    p: impl AsRef<Path>,
    uuid: Option<uuid::Uuid>,
    sector_size: disk::LogicalBlockSize,
) -> Result<uuid::Uuid> {
    debug!("opening {} for writing", p.as_ref().display());
    let mut file = OpenOptions::new().write(true).read(true).open(p)?;
    let bak = find_backup_lba(&mut file, sector_size)?;
    let guid = match uuid {
        Some(u) => u,
        None => {
            let u = uuid::Uuid::new_v4();
            debug!("Generated random uuid: {}", u);
            u
        }
    };

    let hdr = Header::compute_new(true, &BTreeMap::new(), guid, bak, &None, sector_size, None)?;
    debug!("new header: {:#?}", hdr);
    hdr.write_primary(&mut file, sector_size)?;

    Ok(guid)
}

#[test]
// test compute new with fdisk'd image, without giving original header
fn test_compute_new_fdisk_no_header() {
    use tempfile;
    let lb_size = disk::DEFAULT_SECTOR_SIZE;
    let diskpath = Path::new("tests/fixtures/test.img");
    let h = read_header(diskpath, lb_size).unwrap();
    let cfg = crate::GptConfig::new().writable(false).initialized(true);
    let disk = cfg.open(diskpath).unwrap();
    println!("original Disk {:#?}", disk);
    let partitions: BTreeMap<u32, partition::Partition> = BTreeMap::new();
    let mut file = std::fs::OpenOptions::new()
        .write(false)
        .read(true)
        .open(diskpath)
        .unwrap();
    let bak = find_backup_lba(&mut file, *disk.logical_block_size()).unwrap();
    println!("Back offset {}", bak);
    let mut tempdisk = tempfile::tempfile().expect("failed to create tempfile disk");
    {
        let data: [u8; 4096] = [0; 4096];
        println!("Creating blank header file for testing");
        // This should be large enough to contain the backup partition array,
        // or computing the checksum when writing the backup header will fail.
        let min_file_size = (bak * Into::<u64>::into(lb_size)) + Into::<u64>::into(lb_size);
        for _ in 0..((min_file_size + 4095) / 4096) {
            tempdisk.write_all(&data).unwrap();
        }
    };
    let new_primary =
        Header::compute_new(true, &partitions, uuid::Uuid::new_v4(), bak, &None, lb_size, None).unwrap();
    println!("new primary header {:#?}", new_primary);
    let new_backup =
        Header::compute_new(false, &partitions, uuid::Uuid::new_v4(), bak, &None, lb_size, None).unwrap();
    println!("new backup header {:#?}", new_backup);
    new_primary
        .write_primary(&mut tempdisk, lb_size)
        .unwrap();
    new_backup
        .write_backup(&mut tempdisk, lb_size)
        .unwrap();
    let mbr = crate::mbr::ProtectiveMBR::new();
    mbr.overwrite_lba0(&mut tempdisk).unwrap();
    assert_eq!(h.signature, new_primary.signature);
    assert_eq!(h.revision, new_primary.revision);
    assert_eq!(h.header_size_le, new_primary.header_size_le);
    assert_eq!(h.reserved, new_primary.reserved);
    assert_eq!(h.current_lba, new_primary.current_lba);
    assert_eq!(h.backup_lba, new_primary.backup_lba);
    assert_eq!(34, new_primary.first_usable); // since we did not include the original header, the first usable defaults to 34
    assert_eq!(h.last_usable, new_primary.last_usable);
    assert_ne!(h.disk_guid, new_primary.disk_guid); //writing new disk => new guid
    assert_eq!(2, new_primary.part_start);
    // when creating a new table from scratch, we should always have a minimum of 128 entries to be UEFI compliant
    assert_eq!(128, new_primary.num_parts);
    assert_eq!(128, new_primary.part_size); //standard size (it is possibly different, but usually 128)

    let bh = read_backup_header(&mut file, *disk.logical_block_size()).unwrap();
    //backup header tests
    //current_lba and backup_lba should be flipped
    assert_eq!(h.backup_lba, new_backup.current_lba);
    assert_eq!(h.current_lba, new_backup.backup_lba);
    // also, the backup header should match
    assert_eq!(bh.current_lba, new_backup.current_lba);
    assert_eq!(bh.backup_lba, new_backup.backup_lba);
    assert_eq!(bh.part_start, new_backup.part_start);
}

#[test]
// test compute new with fdisk'd image, giving original header
// Note: if you would like to save to a file to check the headers
// manually, use OpenOptions with write/create/truncate/read.  without the
// read the checksum will not be able to read the tempdisk
fn test_compute_new_fdisk_pass_header() {
    let diskpath = Path::new("tests/fixtures/test.img");
    let h = read_header(diskpath, disk::DEFAULT_SECTOR_SIZE).unwrap();
    let cfg = crate::GptConfig::new().writable(false).initialized(true);
    let disk = cfg.open(diskpath).unwrap();
    println!("original Disk {:#?}", disk);
    let partitions: BTreeMap<u32, partition::Partition> = BTreeMap::new();
    let mut file = std::fs::OpenOptions::new()
        .write(false)
        .read(true)
        .open(diskpath)
        .unwrap();
    let bak = find_backup_lba(&mut file, *disk.logical_block_size()).unwrap();
    println!("Back offset {}", bak);
    let mut tempdisk = tempfile::tempfile().expect("failed to create tempfile disk");
    {
        let data: [u8; 4096] = [0; 4096];
        println!("Creating copy of test header file for testing");
        for _ in 0..2560 {
            tempdisk.write_all(&data).unwrap();
        }
    };
    let bh = read_backup_header(&mut file, *disk.logical_block_size()).unwrap();
    let mbr = crate::mbr::ProtectiveMBR::new();
    mbr.overwrite_lba0(&mut tempdisk).unwrap();
    let new_primary = Header::compute_new(
        true,
        &partitions,
        uuid::Uuid::new_v4(),
        bak,
        &Some(h.clone()),
        disk::DEFAULT_SECTOR_SIZE,
        None,
    )
    .unwrap();
    println!("new primary header {:#?}", new_primary);
    let new_backup = Header::compute_new(
        false,
        &partitions,
        uuid::Uuid::new_v4(),
        bak,
        &Some(h.clone()),
        disk::DEFAULT_SECTOR_SIZE,
        None,
    )
    .unwrap();
    println!("new backup header {:#?}", new_backup);
    new_primary
        .write_primary(&mut tempdisk, disk::DEFAULT_SECTOR_SIZE)
        .unwrap();
    new_backup
        .write_backup(&mut tempdisk, disk::DEFAULT_SECTOR_SIZE)
        .unwrap();
    assert_eq!(h.signature, new_primary.signature);
    assert_eq!(h.revision, new_primary.revision);
    assert_eq!(h.header_size_le, new_primary.header_size_le);
    assert_eq!(h.reserved, new_primary.reserved);
    assert_eq!(h.current_lba, new_primary.current_lba);
    assert_eq!(h.backup_lba, new_primary.backup_lba);
    assert_eq!(h.first_usable, new_primary.first_usable); // since we did not include the original header, the first usable defaults to 34
    assert_eq!(h.last_usable, new_primary.last_usable);
    assert_ne!(h.disk_guid, new_primary.disk_guid); //writing new disk => new guid
    assert_eq!(2, new_primary.part_start);
    //if we do a write disk this wouldn't actually be able to write a new partition with fdisk unless you created a new partition table on it
    assert_eq!(h.num_parts, new_primary.num_parts);
    assert_eq!(h.part_size, new_primary.part_size); //standard size (it is possibly different, but usually 128)

    //backup header tests
    //current_lba and backup_lba should be flipped
    assert_eq!(h.backup_lba, new_backup.current_lba);
    assert_eq!(h.current_lba, new_backup.backup_lba);
    // also, the backup header should match
    assert_eq!(bh.current_lba, new_backup.current_lba);
    assert_eq!(bh.backup_lba, new_backup.backup_lba);
    assert_eq!(bh.part_start, new_backup.part_start);
}

#[test]
// test compute new with fdisk'd image, without giving original header
fn test_compute_new_gpt_no_header() {
    use tempfile;
    let lb_size = disk::DEFAULT_SECTOR_SIZE;
    let diskpath = Path::new("tests/fixtures/gpt-linux-disk-01.img");
    let h = read_header(diskpath, lb_size).unwrap();
    let cfg = crate::GptConfig::new().writable(false).initialized(true);
    let disk = cfg.open(diskpath).unwrap();
    println!("original Disk {:#?}", disk);
    let partitions: BTreeMap<u32, partition::Partition> = BTreeMap::new();
    let mut file = std::fs::OpenOptions::new()
        .write(false)
        .read(true)
        .open(diskpath)
        .unwrap();
    let bak = find_backup_lba(&mut file, *disk.logical_block_size()).unwrap();
    println!("Back offset {}", bak);
    let mut tempdisk = tempfile::tempfile().expect("failed to create tempfile disk");
    {
        let data: [u8; 4096] = [0; 4096];
        println!("Creating blank header file for testing");
        for _ in 0..100 {
            tempdisk.write_all(&data).unwrap();
        }
    };
    let new_primary =
        Header::compute_new(true, &partitions, uuid::Uuid::new_v4(), bak, &None, lb_size, None).unwrap();
    println!("new primary header {:#?}", new_primary);
    let new_backup =
        Header::compute_new(false, &partitions, uuid::Uuid::new_v4(), bak, &None, lb_size, None).unwrap();
    println!("new backup header {:#?}", new_backup);
    new_primary
        .write_primary(&mut tempdisk, lb_size)
        .unwrap();
    new_backup
        .write_backup(&mut tempdisk, lb_size)
        .unwrap();
    let mbr = crate::mbr::ProtectiveMBR::new();
    mbr.overwrite_lba0(&mut tempdisk).unwrap();
    assert_eq!(h.signature, new_primary.signature);
    assert_eq!(h.revision, new_primary.revision);
    assert_eq!(h.header_size_le, new_primary.header_size_le);
    assert_eq!(h.reserved, new_primary.reserved);
    assert_eq!(h.current_lba, new_primary.current_lba);
    assert_eq!(h.backup_lba, new_primary.backup_lba);
    assert_eq!(34, new_primary.first_usable); // since we did not include the original header, the first usable defaults to 34
    assert_eq!(h.last_usable, new_primary.last_usable);
    assert_ne!(h.disk_guid, new_primary.disk_guid); //writing new disk => new guid
    assert_eq!(2, new_primary.part_start);
    // when creating a new table from scratch, we should always have a minimum of 128 entries to be UEFI compliant
    assert_eq!(128, new_primary.num_parts);
    assert_eq!(128, new_primary.part_size); //standard size (it is possibly different, but usually 128)

    let bh = read_backup_header(&mut file, *disk.logical_block_size()).unwrap();
    //backup header tests
    //current_lba and backup_lba should be flipped
    assert_eq!(h.backup_lba, new_backup.current_lba);
    assert_eq!(h.current_lba, new_backup.backup_lba);
    // also, the backup header should match
    assert_eq!(bh.current_lba, new_backup.current_lba);
    assert_eq!(bh.backup_lba, new_backup.backup_lba);
    assert_eq!(bh.part_start, new_backup.part_start);
}

#[test]
// test compute new with fdisk'd image, giving original header
// Note: if you would like to save to a file to check the headers
// manually, use OpenOptions with write/create/truncate/read.  without the
// read the checksum will not be able to read the tempdisk
fn test_compute_new_fdisk_gpt_header() {
    let diskpath = Path::new("tests/fixtures/gpt-linux-disk-01.img");
    let h = read_header(diskpath, disk::DEFAULT_SECTOR_SIZE).unwrap();
    let cfg = crate::GptConfig::new().writable(false).initialized(true);
    let disk = cfg.open(diskpath).unwrap();
    println!("original Disk {:#?}", disk);
    let partitions: BTreeMap<u32, partition::Partition> = BTreeMap::new();
    let mut file = std::fs::OpenOptions::new()
        .write(false)
        .read(true)
        .open(diskpath)
        .unwrap();
    let bak = find_backup_lba(&mut file, *disk.logical_block_size()).unwrap();
    println!("Back offset {}", bak);
    let mut tempdisk = tempfile::tempfile().expect("failed to create tempfile disk");
    {
        let data: [u8; 4096] = [0; 4096];
        println!("Creating copy of test header file for testing");
        for _ in 0..2560 {
            tempdisk.write_all(&data).unwrap();
        }
    };
    let bh = read_backup_header(&mut file, *disk.logical_block_size()).unwrap();
    let mbr = crate::mbr::ProtectiveMBR::new();
    mbr.overwrite_lba0(&mut tempdisk).unwrap();
    let new_primary = Header::compute_new(
        true,
        &partitions,
        uuid::Uuid::new_v4(),
        bak,
        &Some(h.clone()),
        disk::DEFAULT_SECTOR_SIZE,
        None,
    )
    .unwrap();
    println!("new primary header {:#?}", new_primary);
    let new_backup = Header::compute_new(
        false,
        &partitions,
        uuid::Uuid::new_v4(),
        bak,
        &Some(h.clone()),
        disk::DEFAULT_SECTOR_SIZE,
        None,
    )
    .unwrap();
    println!("new backup header {:#?}", new_backup);
    new_primary
        .write_primary(&mut tempdisk, disk::DEFAULT_SECTOR_SIZE)
        .unwrap();
    new_backup
        .write_backup(&mut tempdisk, disk::DEFAULT_SECTOR_SIZE)
        .unwrap();
    assert_eq!(h.signature, new_primary.signature);
    assert_eq!(h.revision, new_primary.revision);
    assert_eq!(h.header_size_le, new_primary.header_size_le);
    assert_eq!(h.reserved, new_primary.reserved);
    assert_eq!(h.current_lba, new_primary.current_lba);
    assert_eq!(h.backup_lba, new_primary.backup_lba);
    assert_eq!(h.first_usable, new_primary.first_usable); // since we did not include the original header, the first usable defaults to 34
    assert_eq!(h.last_usable, new_primary.last_usable);
    assert_ne!(h.disk_guid, new_primary.disk_guid); //writing new disk => new guid
    assert_eq!(2, new_primary.part_start);
    //if we do a write disk this wouldn't actually be able to write a new partition with fdisk unless you created a new partition table on it
    assert_eq!(h.num_parts, new_primary.num_parts);
    assert_eq!(h.part_size, new_primary.part_size); //standard size (it is possibly different, but usually 128)

    //backup header tests
    //current_lba and backup_lba should be flipped
    assert_eq!(h.backup_lba, new_backup.current_lba);
    assert_eq!(h.current_lba, new_backup.backup_lba);
    // also, the backup header should match
    assert_eq!(bh.current_lba, new_backup.current_lba);
    assert_eq!(bh.backup_lba, new_backup.backup_lba);
    assert_eq!(bh.part_start, new_backup.part_start);
}