fidl_next/fuchsia/transport/
channel.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! A transport implementation which uses Zircon channels.

use core::future::Future;
use core::mem::replace;
use core::pin::Pin;
use core::slice::from_raw_parts_mut;
use core::sync::atomic::{AtomicBool, Ordering};
use core::task::{Context, Poll};
use std::sync::Arc;

use fuchsia_async::{RWHandle, ReadableHandle as _};
use futures::task::AtomicWaker;
use zx::sys::{
    zx_channel_read, zx_channel_write, ZX_ERR_BUFFER_TOO_SMALL, ZX_ERR_PEER_CLOSED,
    ZX_ERR_SHOULD_WAIT, ZX_OK,
};
use zx::{AsHandleRef as _, Channel, Handle, Status};

use crate::decoder::InternalHandleDecoder;
use crate::fuchsia::{HandleDecoder, HandleEncoder};
use crate::protocol::Transport;
use crate::{Chunk, DecodeError, Decoder, Encoder, CHUNK_SIZE};

struct Shared {
    is_closed: AtomicBool,
    closed_waker: AtomicWaker,
    channel: RWHandle<Channel>,
    // TODO: recycle send/recv buffers to reduce allocations
}

impl Shared {
    fn new(channel: Channel) -> Self {
        Self {
            is_closed: AtomicBool::new(false),
            closed_waker: AtomicWaker::new(),
            channel: RWHandle::new(channel),
        }
    }
}

/// A channel sender.
#[derive(Clone)]
pub struct Sender {
    shared: Arc<Shared>,
}

/// A channel buffer.
pub struct Buffer {
    handles: Vec<Handle>,
    chunks: Vec<Chunk>,
}

impl Buffer {
    fn new() -> Self {
        Self { handles: Vec::new(), chunks: Vec::new() }
    }
}

impl Encoder for Buffer {
    #[inline]
    fn bytes_written(&self) -> usize {
        Encoder::bytes_written(&self.chunks)
    }

    #[inline]
    fn reserve(&mut self, len: usize) {
        Encoder::reserve(&mut self.chunks, len)
    }

    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        Encoder::write(&mut self.chunks, bytes)
    }

    #[inline]
    fn rewrite(&mut self, pos: usize, bytes: &[u8]) {
        Encoder::rewrite(&mut self.chunks, pos, bytes)
    }

    #[inline]
    fn __internal_handle_count(&self) -> usize {
        self.handles.len()
    }
}

impl HandleEncoder for Buffer {
    fn push_handle(&mut self, handle: Handle) -> Result<(), crate::EncodeError> {
        self.handles.push(handle);
        Ok(())
    }

    fn handles_pushed(&self) -> usize {
        self.handles.len()
    }
}

/// A channel send future.
#[must_use = "futures do nothing unless polled"]
pub struct SendFuture<'s> {
    shared: &'s Shared,
    buffer: Buffer,
}

impl Future for SendFuture<'_> {
    type Output = Result<(), Status>;

    fn poll(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Self::Output> {
        let this = Pin::into_inner(self);

        let result = unsafe {
            zx_channel_write(
                this.shared.channel.get_ref().raw_handle(),
                0,
                this.buffer.chunks.as_ptr().cast::<u8>(),
                (this.buffer.chunks.len() * CHUNK_SIZE) as u32,
                this.buffer.handles.as_ptr().cast(),
                this.buffer.handles.len() as u32,
            )
        };

        if result == ZX_OK {
            // Handles were written to the channel, so we must not drop them.
            unsafe {
                this.buffer.handles.set_len(0);
            }
            Poll::Ready(Ok(()))
        } else {
            Poll::Ready(Err(Status::from_raw(result)))
        }
    }
}

/// A channel receiver.
pub struct Receiver {
    shared: Arc<Shared>,
}

/// A channel receive future.
#[must_use = "futures do nothing unless polled"]
pub struct RecvFuture<'r> {
    shared: &'r Shared,
    buffer: Option<Buffer>,
}

impl Future for RecvFuture<'_> {
    type Output = Result<Option<RecvBuffer>, Status>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = Pin::into_inner(self);
        let buffer = this.buffer.as_mut().unwrap();

        let mut actual_bytes = 0;
        let mut actual_handles = 0;

        loop {
            let result = unsafe {
                zx_channel_read(
                    this.shared.channel.get_ref().raw_handle(),
                    0,
                    buffer.chunks.as_mut_ptr().cast(),
                    buffer.handles.as_mut_ptr().cast(),
                    (buffer.chunks.capacity() * CHUNK_SIZE) as u32,
                    buffer.handles.capacity() as u32,
                    &mut actual_bytes,
                    &mut actual_handles,
                )
            };

            match result {
                ZX_OK => {
                    unsafe {
                        buffer.chunks.set_len(actual_bytes as usize / CHUNK_SIZE);
                        buffer.handles.set_len(actual_handles as usize);
                    }
                    return Poll::Ready(Ok(Some(RecvBuffer {
                        buffer: this.buffer.take().unwrap(),
                        chunks_taken: 0,
                        handles_taken: 0,
                    })));
                }
                ZX_ERR_PEER_CLOSED => return Poll::Ready(Ok(None)),
                ZX_ERR_BUFFER_TOO_SMALL => {
                    let min_chunks = (actual_bytes as usize).div_ceil(CHUNK_SIZE);
                    buffer.chunks.reserve(min_chunks - buffer.chunks.capacity());
                    buffer.handles.reserve(actual_handles as usize - buffer.handles.capacity());
                }
                ZX_ERR_SHOULD_WAIT => {
                    if matches!(this.shared.channel.need_readable(cx)?, Poll::Pending) {
                        this.shared.closed_waker.register(cx.waker());
                        if this.shared.is_closed.load(Ordering::Relaxed) {
                            return Poll::Ready(Ok(None));
                        }
                        return Poll::Pending;
                    }
                }
                raw => return Poll::Ready(Err(Status::from_raw(raw))),
            }
        }
    }
}

/// A channel receive buffer.
pub struct RecvBuffer {
    buffer: Buffer,
    chunks_taken: usize,
    handles_taken: usize,
}

impl<'buf> Decoder<'buf> for &'buf mut RecvBuffer {
    fn take_chunks(&mut self, count: usize) -> Result<&'buf mut [Chunk], DecodeError> {
        if count > self.buffer.chunks.len() - self.chunks_taken {
            return Err(DecodeError::InsufficientData);
        }

        let chunks = unsafe {
            from_raw_parts_mut(self.buffer.chunks.as_mut_ptr().add(self.chunks_taken), count)
        };
        self.chunks_taken += count;

        Ok(chunks)
    }

    fn finish(&mut self) -> Result<(), DecodeError> {
        if self.chunks_taken != self.buffer.chunks.len() {
            return Err(DecodeError::ExtraBytes {
                num_extra: (self.buffer.chunks.len() - self.chunks_taken) * CHUNK_SIZE,
            });
        }

        if self.handles_taken != self.buffer.handles.len() {
            return Err(DecodeError::ExtraHandles {
                num_extra: self.buffer.handles.len() - self.handles_taken,
            });
        }

        Ok(())
    }
}

impl InternalHandleDecoder for &mut RecvBuffer {
    fn __internal_take_handles(&mut self, count: usize) -> Result<(), DecodeError> {
        if count > self.buffer.handles.len() - self.handles_taken {
            return Err(DecodeError::InsufficientHandles);
        }

        for i in self.handles_taken..self.handles_taken + count {
            let handle = replace(&mut self.buffer.handles[i], Handle::invalid());
            drop(handle);
        }
        self.handles_taken += count;

        Ok(())
    }

    fn __internal_handles_remaining(&self) -> usize {
        self.buffer.handles.len() - self.handles_taken
    }
}

impl HandleDecoder for &mut RecvBuffer {
    fn take_handle(&mut self) -> Result<Handle, DecodeError> {
        if self.handles_taken >= self.buffer.handles.len() {
            return Err(DecodeError::InsufficientHandles);
        }

        let handle = replace(&mut self.buffer.handles[self.handles_taken], Handle::invalid());
        self.handles_taken += 1;

        Ok(handle)
    }

    fn handles_remaining(&mut self) -> usize {
        self.buffer.handles.len() - self.handles_taken
    }
}

impl Transport for Channel {
    type Error = Status;

    fn split(self) -> (Self::Sender, Self::Receiver) {
        let shared = Arc::new(Shared::new(self));
        (Sender { shared: shared.clone() }, Receiver { shared })
    }

    type Sender = Sender;
    type SendBuffer = Buffer;
    type Encoder<'b> = &'b mut Buffer;
    type SendFuture<'s> = SendFuture<'s>;

    fn acquire(_: &Self::Sender) -> Self::SendBuffer {
        Buffer::new()
    }

    fn encoder(buffer: &mut Self::SendBuffer) -> Self::Encoder<'_> {
        buffer
    }

    fn send(sender: &Self::Sender, buffer: Self::SendBuffer) -> Self::SendFuture<'_> {
        SendFuture { shared: &sender.shared, buffer }
    }

    fn close(sender: &Self::Sender) {
        sender.shared.is_closed.store(true, Ordering::Relaxed);
        sender.shared.closed_waker.wake();
    }

    type Receiver = Receiver;
    type RecvFuture<'r> = RecvFuture<'r>;
    type RecvBuffer = RecvBuffer;
    type Decoder<'b> = &'b mut RecvBuffer;

    fn recv(receiver: &mut Self::Receiver) -> Self::RecvFuture<'_> {
        RecvFuture { shared: &receiver.shared, buffer: Some(Buffer::new()) }
    }

    fn decoder(buffer: &mut Self::RecvBuffer) -> Self::Decoder<'_> {
        buffer
    }
}

#[cfg(test)]
mod tests {
    use fuchsia_async as fasync;
    use zx::Channel;

    use crate::testing::transport::*;

    #[fasync::run_singlethreaded(test)]
    async fn close_on_drop() {
        let (client_end, server_end) = Channel::create();
        test_close_on_drop(client_end, server_end).await;
    }

    #[fasync::run_singlethreaded(test)]
    async fn one_way() {
        let (client_end, server_end) = Channel::create();
        test_one_way(client_end, server_end).await;
    }

    #[fasync::run_singlethreaded(test)]
    async fn two_way() {
        let (client_end, server_end) = Channel::create();
        test_two_way(client_end, server_end).await;
    }

    #[fasync::run_singlethreaded(test)]
    async fn multiple_two_way() {
        let (client_end, server_end) = Channel::create();
        test_multiple_two_way(client_end, server_end).await;
    }

    #[fasync::run_singlethreaded(test)]
    async fn event() {
        let (client_end, server_end) = Channel::create();
        test_event(client_end, server_end).await;
    }
}