event_listener/notify.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
//! The `Notification` trait for specifying notification.
use crate::sync::atomic::{self, Ordering};
#[cfg(feature = "std")]
use core::fmt;
pub(crate) use __private::Internal;
/// The type of notification to use with an [`Event`].
///
/// This is hidden and sealed to prevent changes to this trait from being breaking.
///
/// [`Event`]: crate::Event
#[doc(hidden)]
pub trait NotificationPrivate {
/// The tag data associated with a notification.
type Tag;
/// Emit a fence to ensure that the notification is visible to the listeners.
fn fence(&self, internal: Internal);
/// Whether or not the number of currently waiting listeners should be subtracted from `count()`.
fn is_additional(&self, internal: Internal) -> bool;
/// Get the number of listeners to wake.
fn count(&self, internal: Internal) -> usize;
/// Get a tag to be associated with a notification.
///
/// This method is expected to be called `count()` times.
fn next_tag(&mut self, internal: Internal) -> Self::Tag;
}
/// A notification that can be used to notify an [`Event`].
///
/// This type is used by the [`Event::notify()`] function to determine how many listeners to wake up, whether
/// or not to subtract additional listeners, and other properties. The actual internal data is hidden in a
/// private trait and is intentionally not exposed. This means that users cannot manually implement the
/// [`Notification`] trait. However, it also means that changing the underlying trait is not a semver breaking
/// change.
///
/// Users can create types that implement notifications using the combinators on the [`IntoNotification`] type.
/// Typical construction of a [`Notification`] starts with a numeric literal (like `3usize`) and then optionally
/// adding combinators.
///
/// # Example
///
/// ```
/// use event_listener::{Event, IntoNotification, Notification};
///
/// fn notify(ev: &Event, notify: impl Notification<Tag = ()>) {
/// ev.notify(notify);
/// }
///
/// notify(&Event::new(), 1.additional());
/// ```
///
/// [`Event`]: crate::Event
pub trait Notification: NotificationPrivate {}
impl<N: NotificationPrivate + ?Sized> Notification for N {}
/// Notify a given number of unnotifed listeners.
#[derive(Debug, Clone)]
#[doc(hidden)]
pub struct Notify(usize);
impl Notify {
/// Create a new `Notify` with the given number of listeners to notify.
fn new(count: usize) -> Self {
Self(count)
}
}
impl NotificationPrivate for Notify {
type Tag = ();
fn is_additional(&self, _: Internal) -> bool {
false
}
fn fence(&self, _: Internal) {
full_fence();
}
fn count(&self, _: Internal) -> usize {
self.0
}
fn next_tag(&mut self, _: Internal) -> Self::Tag {}
}
/// Make the underlying notification additional.
#[derive(Debug, Clone)]
#[doc(hidden)]
pub struct Additional<N: ?Sized>(N);
impl<N> Additional<N> {
/// Create a new `Additional` with the given notification.
fn new(inner: N) -> Self {
Self(inner)
}
}
impl<N> NotificationPrivate for Additional<N>
where
N: Notification + ?Sized,
{
type Tag = N::Tag;
fn is_additional(&self, _: Internal) -> bool {
true
}
fn fence(&self, i: Internal) {
self.0.fence(i);
}
fn count(&self, i: Internal) -> usize {
self.0.count(i)
}
fn next_tag(&mut self, i: Internal) -> Self::Tag {
self.0.next_tag(i)
}
}
/// Don't emit a fence for this notification.
#[derive(Debug, Clone)]
#[doc(hidden)]
pub struct Relaxed<N: ?Sized>(N);
impl<N> Relaxed<N> {
/// Create a new `Relaxed` with the given notification.
fn new(inner: N) -> Self {
Self(inner)
}
}
impl<N> NotificationPrivate for Relaxed<N>
where
N: Notification + ?Sized,
{
type Tag = N::Tag;
fn is_additional(&self, i: Internal) -> bool {
self.0.is_additional(i)
}
fn fence(&self, _: Internal) {
// Don't emit a fence.
}
fn count(&self, i: Internal) -> usize {
self.0.count(i)
}
fn next_tag(&mut self, i: Internal) -> Self::Tag {
self.0.next_tag(i)
}
}
/// Use a tag to notify listeners.
#[cfg(feature = "std")]
#[derive(Debug, Clone)]
#[doc(hidden)]
pub struct Tag<N: ?Sized, T> {
tag: T,
inner: N,
}
#[cfg(feature = "std")]
impl<N: ?Sized, T> Tag<N, T> {
/// Create a new `Tag` with the given tag and notification.
fn new(tag: T, inner: N) -> Self
where
N: Sized,
{
Self { tag, inner }
}
}
#[cfg(feature = "std")]
impl<N, T> NotificationPrivate for Tag<N, T>
where
N: Notification + ?Sized,
T: Clone,
{
type Tag = T;
fn is_additional(&self, i: Internal) -> bool {
self.inner.is_additional(i)
}
fn fence(&self, i: Internal) {
self.inner.fence(i);
}
fn count(&self, i: Internal) -> usize {
self.inner.count(i)
}
fn next_tag(&mut self, _: Internal) -> Self::Tag {
self.tag.clone()
}
}
/// Use a function to generate a tag to notify listeners.
#[cfg(feature = "std")]
#[doc(hidden)]
pub struct TagWith<N: ?Sized, F> {
tag: F,
inner: N,
}
#[cfg(feature = "std")]
impl<N: fmt::Debug, F> fmt::Debug for TagWith<N, F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct Ellipses;
impl fmt::Debug for Ellipses {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("..")
}
}
f.debug_struct("TagWith")
.field("tag", &Ellipses)
.field("inner", &self.inner)
.finish()
}
}
#[cfg(feature = "std")]
impl<N, F> TagWith<N, F> {
/// Create a new `TagFn` with the given tag function and notification.
fn new(tag: F, inner: N) -> Self {
Self { tag, inner }
}
}
#[cfg(feature = "std")]
impl<N, F, T> NotificationPrivate for TagWith<N, F>
where
N: Notification + ?Sized,
F: FnMut() -> T,
{
type Tag = T;
fn is_additional(&self, i: Internal) -> bool {
self.inner.is_additional(i)
}
fn fence(&self, i: Internal) {
self.inner.fence(i);
}
fn count(&self, i: Internal) -> usize {
self.inner.count(i)
}
fn next_tag(&mut self, _: Internal) -> Self::Tag {
(self.tag)()
}
}
/// A generic notification.
#[derive(Debug)]
pub(crate) struct GenericNotify<F> {
/// Number of listeners to notify.
count: usize,
/// Whether this notification is additional.
additional: bool,
/// Generate tags.
tags: F,
}
impl<T, F: TagProducer<Tag = T>> GenericNotify<F> {
pub(crate) fn new(count: usize, additional: bool, tags: F) -> Self {
Self {
count,
additional,
tags,
}
}
}
impl<T, F: TagProducer<Tag = T>> NotificationPrivate for GenericNotify<F> {
type Tag = T;
fn is_additional(&self, _: Internal) -> bool {
self.additional
}
fn fence(&self, _: Internal) {
// Don't emit a fence.
}
fn count(&self, _: Internal) -> usize {
self.count
}
fn next_tag(&mut self, _: Internal) -> Self::Tag {
self.tags.next_tag()
}
}
/// The producer for a generic notification.
pub(crate) trait TagProducer {
type Tag;
/// Get the next tag.
fn next_tag(&mut self) -> Self::Tag;
}
impl<T, F: FnMut() -> T> TagProducer for F {
type Tag = T;
fn next_tag(&mut self) -> T {
(self)()
}
}
/// A value that can be converted into a [`Notification`].
///
/// This trait adds onto the [`Notification`] trait by providing combinators that can be applied to all
/// notification types as well as numeric literals. This transforms what would normally be:
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
///
/// // Note that each use case needs its own function, leading to bloat.
/// event.notify(1);
/// event.notify_additional(3);
/// event.notify_relaxed(5);
/// event.notify_additional_relaxed(2);
/// ```
///
/// into this:
///
/// ```
/// use event_listener::{Event, IntoNotification, Listener};
///
/// let event = Event::new();
///
/// event.notify(1);
/// event.notify(3.additional());
/// event.notify(5.relaxed());
/// event.notify(2.additional().relaxed());
/// ```
///
/// This trait is implemented for all types that implement [`Notification`], as well as for non-floating-point
/// numeric literals (`usize`, `i32`, etc).
///
/// This function can be thought of as being analogous to [`std::iter::IntoIterator`], but for [`Notification`].
pub trait IntoNotification: __private::Sealed {
/// The tag data associated with a notification.
///
/// By default, most [`Event`]s will use the unit type, `()`. However, this can be used to pass data along to
/// the listener.
type Tag;
/// The notification type.
///
/// Tells what kind of underlying type that the [`Notification`] is. You probably don't need to worry about
/// this.
type Notify: Notification<Tag = Self::Tag>;
/// Convert this value into a notification.
///
/// This allows the user to convert an [`IntoNotification`] into a [`Notification`].
///
/// # Panics
///
/// This function panics if the value represents a negative number of notifications.
///
/// # Examples
///
/// ```
/// use event_listener::IntoNotification;
///
/// let _ = 3.into_notification();
/// ```
fn into_notification(self) -> Self::Notify;
/// Convert this value into an additional notification.
///
/// By default, notifications ignore listeners that are already notified. Generally, this happens when there
/// is an [`EventListener`] that has been woken up, but hasn't been polled to completion or waited on yet.
/// For instance, if you have three notified listeners and you call `event.notify(5)`, only two listeners
/// will be woken up.
///
/// This default behavior is generally desired. For instance, if you are writing a `Mutex` implementation
/// powered by an [`Event`], you usually only want one consumer to be notified at a time. If you notified
/// a listener when another listener is already notified, you would have unnecessary contention for your
/// lock, as both listeners fight over the lock. Therefore, you would call `event.notify(1)` to make sure
/// *at least* one listener is awake.
///
/// Sometimes, this behavior is not desired. For instance, if you are writing an MPMC channel, it is desirable
/// for multiple listeners to be reading from the underlying queue at once. In this case, you would instead
/// call `event.notify(1.additional())`.
///
/// # Examples
///
/// ```
/// use event_listener::{Event, IntoNotification, Listener};
///
/// let event = Event::new();
///
/// let mut l1 = event.listen();
/// let mut l2 = event.listen();
///
/// // This will only wake up the first listener, as the second call observes that there is already a
/// // notified listener.
/// event.notify(1);
/// event.notify(1);
///
/// // This call wakes up the other listener.
/// event.notify(1.additional());
/// ```
fn additional(self) -> Additional<Self::Notify>
where
Self: Sized,
{
Additional::new(self.into_notification())
}
/// Don't emit a fence for this notification.
///
/// Usually, notifications emit a `SeqCst` atomic fence before any listeners are woken up. This ensures
/// that notification state isn't inconsistent before any wakers are woken up. However, it may be
/// desirable to omit this fence in certain cases.
///
/// - You are running the [`Event`] on a single thread, where no synchronization needs to occur.
/// - You are emitting the `SeqCst` fence yourself.
///
/// In these cases, `relaxed()` can be used to avoid emitting the `SeqCst` fence.
///
/// # Examples
///
/// ```
/// use event_listener::{Event, IntoNotification, Listener};
/// use std::sync::atomic::{self, Ordering};
///
/// let event = Event::new();
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // We should emit a fence manually when using relaxed notifications.
/// atomic::fence(Ordering::SeqCst);
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify(1.relaxed());
/// event.notify(1.relaxed());
/// ```
fn relaxed(self) -> Relaxed<Self::Notify>
where
Self: Sized,
{
Relaxed::new(self.into_notification())
}
/// Use a tag with this notification.
///
/// In many cases, it is desired to send additional information to the listener of the [`Event`]. For instance,
/// it is possible to optimize a `Mutex` implementation by locking directly on the next listener, without
/// needing to ever unlock the mutex at all.
///
/// The tag provided is cloned to provide the tag for all listeners. In cases where this is not flexible
/// enough, use [`IntoNotification::with_tag()`] instead.
///
/// Tagging functions cannot be implemented efficiently for `no_std`, so this is only available
/// when the `std` feature is enabled.
///
/// # Examples
///
/// ```
/// use event_listener::{IntoNotification, Listener, Event};
///
/// let event = Event::<bool>::with_tag();
///
/// let mut listener1 = event.listen();
/// let mut listener2 = event.listen();
///
/// // Notify with `true` then `false`.
/// event.notify(1.additional().tag(true));
/// event.notify(1.additional().tag(false));
///
/// assert_eq!(listener1.wait(), true);
/// assert_eq!(listener2.wait(), false);
/// ```
#[cfg(feature = "std")]
fn tag<T: Clone>(self, tag: T) -> Tag<Self::Notify, T>
where
Self: Sized + IntoNotification<Tag = ()>,
{
Tag::new(tag, self.into_notification())
}
/// Use a function to generate a tag with this notification.
///
/// In many cases, it is desired to send additional information to the listener of the [`Event`]. For instance,
/// it is possible to optimize a `Mutex` implementation by locking directly on the next listener, without
/// needing to ever unlock the mutex at all.
///
/// Tagging functions cannot be implemented efficiently for `no_std`, so this is only available
/// when the `std` feature is enabled.
///
/// # Examples
///
/// ```
/// use event_listener::{IntoNotification, Listener, Event};
///
/// let event = Event::<bool>::with_tag();
///
/// let mut listener1 = event.listen();
/// let mut listener2 = event.listen();
///
/// // Notify with `true` then `false`.
/// event.notify(1.additional().tag_with(|| true));
/// event.notify(1.additional().tag_with(|| false));
///
/// assert_eq!(listener1.wait(), true);
/// assert_eq!(listener2.wait(), false);
/// ```
#[cfg(feature = "std")]
fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
where
Self: Sized + IntoNotification<Tag = ()>,
F: FnMut() -> T,
{
TagWith::new(tag, self.into_notification())
}
}
impl<N: Notification> IntoNotification for N {
type Tag = N::Tag;
type Notify = N;
fn into_notification(self) -> Self::Notify {
self
}
}
macro_rules! impl_for_numeric_types {
($($ty:ty)*) => {$(
impl IntoNotification for $ty {
type Tag = ();
type Notify = Notify;
#[allow(unused_comparisons)]
fn into_notification(self) -> Self::Notify {
if self < 0 {
panic!("negative notification count");
}
Notify::new(self.try_into().expect("overflow"))
}
}
impl __private::Sealed for $ty {}
)*};
}
impl_for_numeric_types! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
/// Equivalent to `atomic::fence(Ordering::SeqCst)`, but in some cases faster.
#[inline]
pub(super) fn full_fence() {
#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), not(miri), not(loom)))]
{
use core::{arch::asm, cell::UnsafeCell};
// HACK(stjepang): On x86 architectures there are two different ways of executing
// a `SeqCst` fence.
//
// 1. `atomic::fence(SeqCst)`, which compiles into a `mfence` instruction.
// 2. A `lock <op>` instruction.
//
// Both instructions have the effect of a full barrier, but empirical benchmarks have shown
// that the second one is sometimes a bit faster.
let a = UnsafeCell::new(0_usize);
// It is common to use `lock or` here, but when using a local variable, `lock not`, which
// does not change the flag, should be slightly more efficient.
// Refs: https://www.felixcloutier.com/x86/not
unsafe {
#[cfg(target_pointer_width = "64")]
asm!("lock not qword ptr [{0}]", in(reg) a.get(), options(nostack, preserves_flags));
#[cfg(target_pointer_width = "32")]
asm!("lock not dword ptr [{0:e}]", in(reg) a.get(), options(nostack, preserves_flags));
}
return;
}
#[allow(unreachable_code)]
{
atomic::fence(Ordering::SeqCst);
}
}
mod __private {
/// Make sure the NotificationPrivate trait can't be implemented outside of this crate.
#[doc(hidden)]
#[derive(Debug)]
pub struct Internal(());
impl Internal {
pub(crate) fn new() -> Self {
Self(())
}
}
#[doc(hidden)]
pub trait Sealed {}
impl<N: super::NotificationPrivate + ?Sized> Sealed for N {}
}